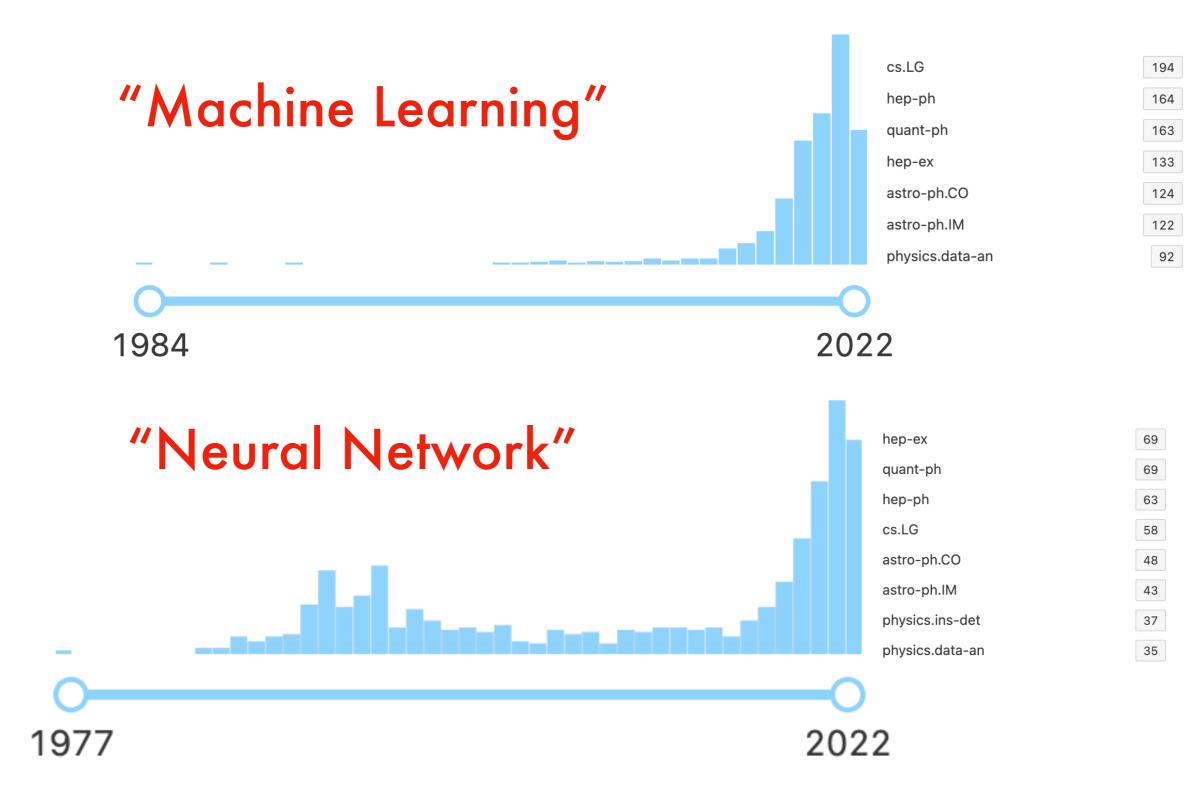
Learning Physics From Machines

Daniel Whiteson, UC Irvine Sep 2023

It's everywhere!



First days of ML in physics

EARLY PHYSICISTS

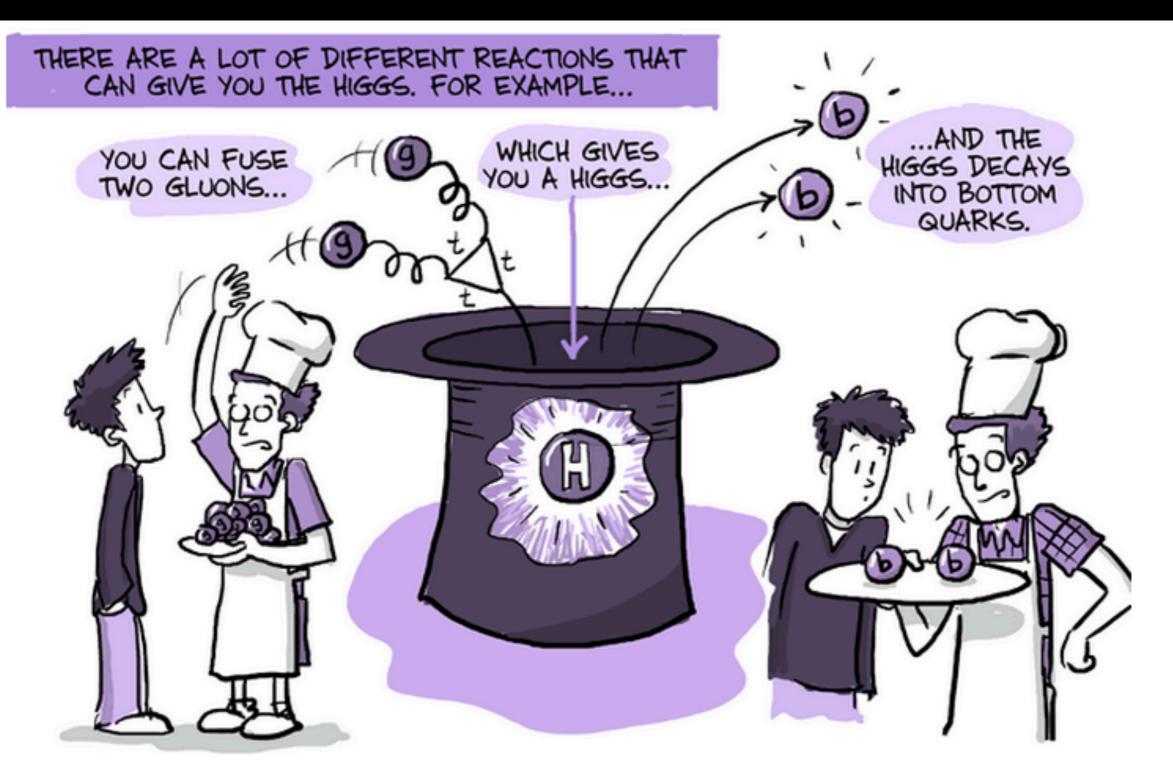
Traditional role of ML

Why do we need machine learning?

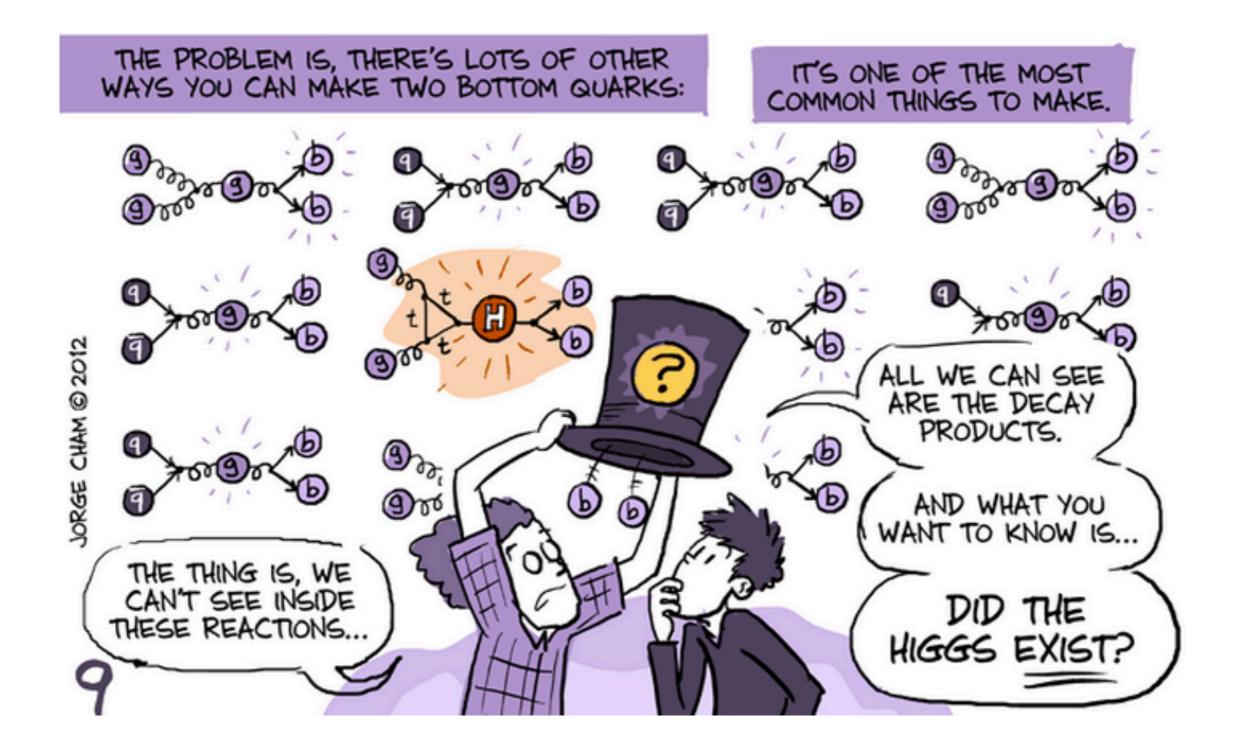
Traditional role of ML

Why do we need machine learning?

Making a new particle

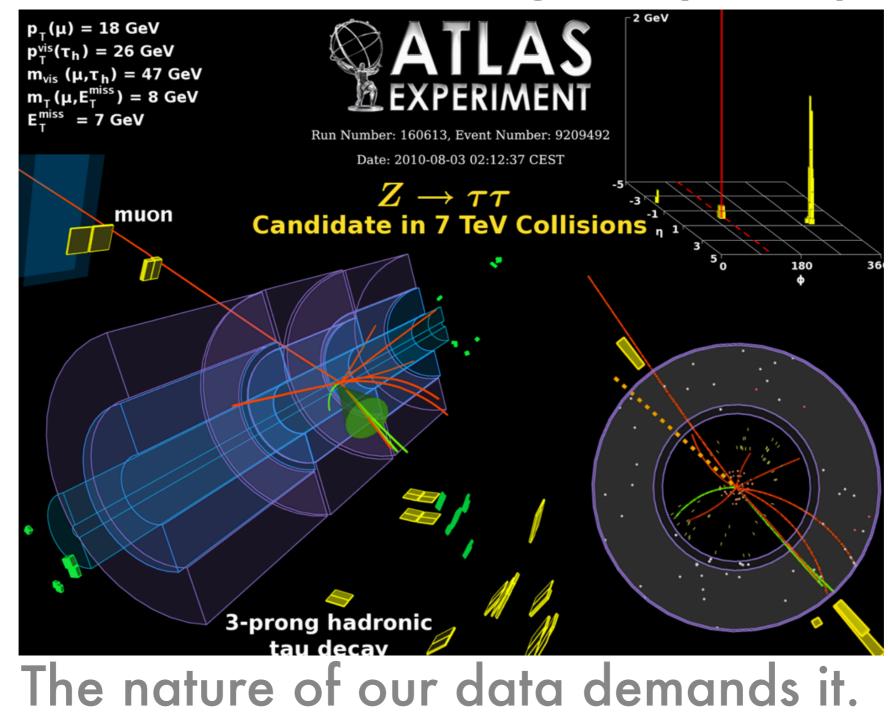


Backgrounds



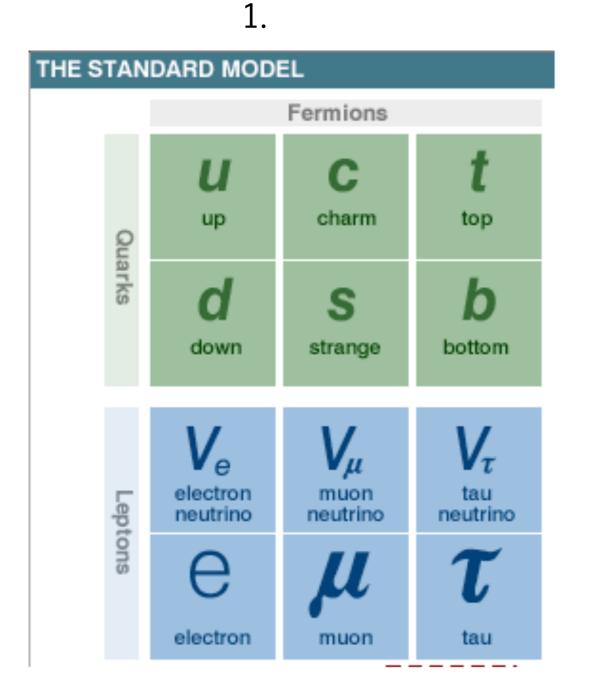
Why statistics?

No event can be unambiguously interpreted.



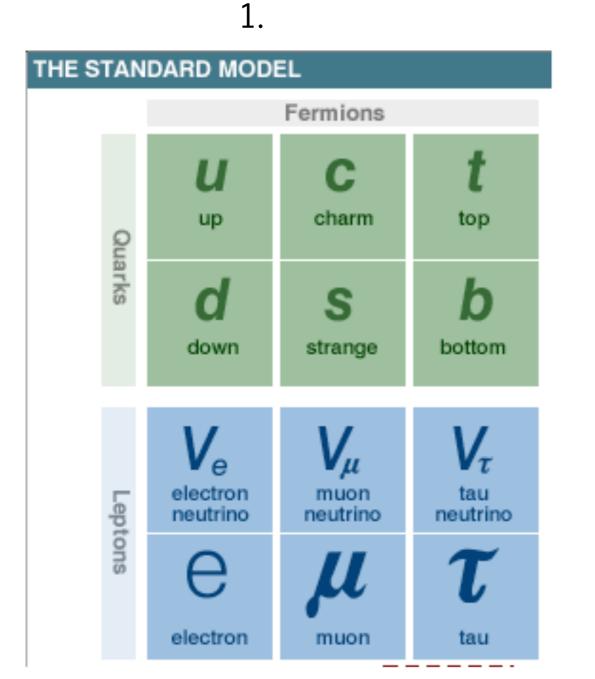
Hypothesis testing

To search for a new particle, we compare the predictions of two hypotheses:



Hypothesis testing

To search for a new particle, we compare the predictions of two hypotheses:



THE STANDARD MODEL PLUS X Fermions u charm top up Quarks S down bottom strange V_{τ} V_e V_{μ} electron Leptons muon tau neutrino neutrino neutrino е

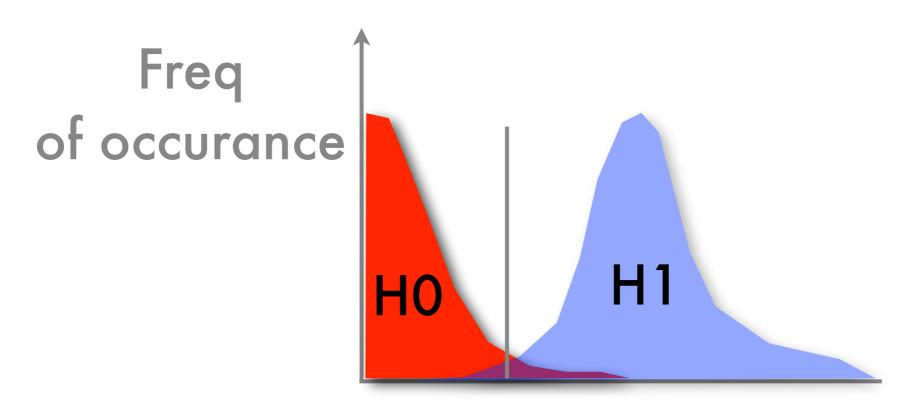
muon

tau

2.

electron

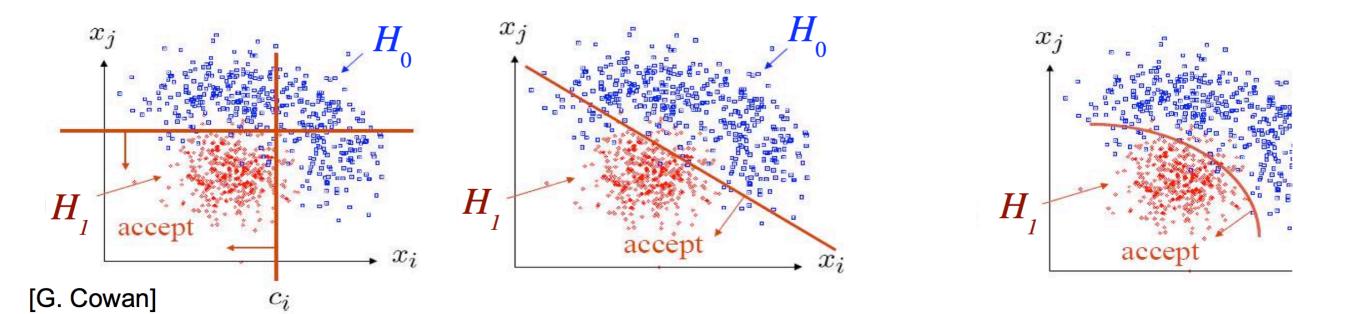
Example



Number of Events

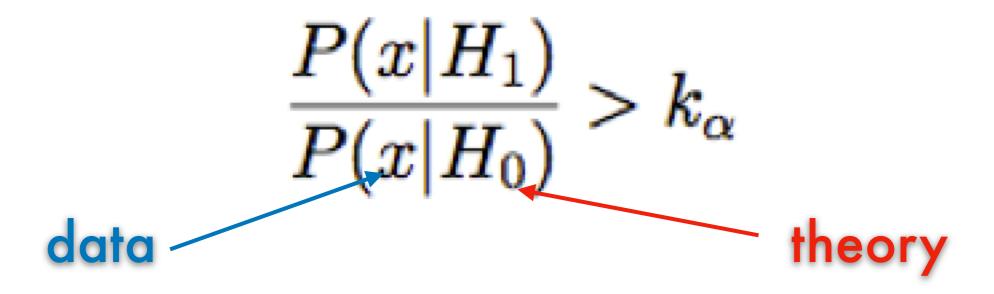
A threshold makes sense. Choice of position balances false vs missed discovery

More complicated



Neyman-Pearson

NP lemma says that the best statistic is the likelihood ratio:



(Gives smallest missed discovery rate for fixed false discovery rate)

Functional space

No problem

If you can calculate:

$$\frac{P(x|H_1)}{P(x|H_0)} > k_{\alpha}$$

For which you need:

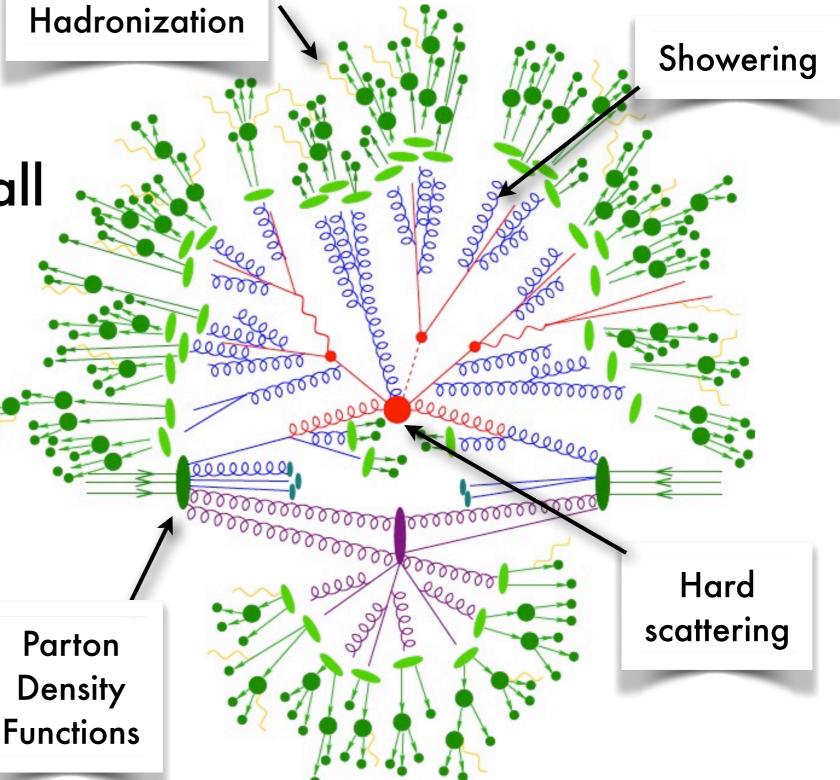
P(data | theory)

In general

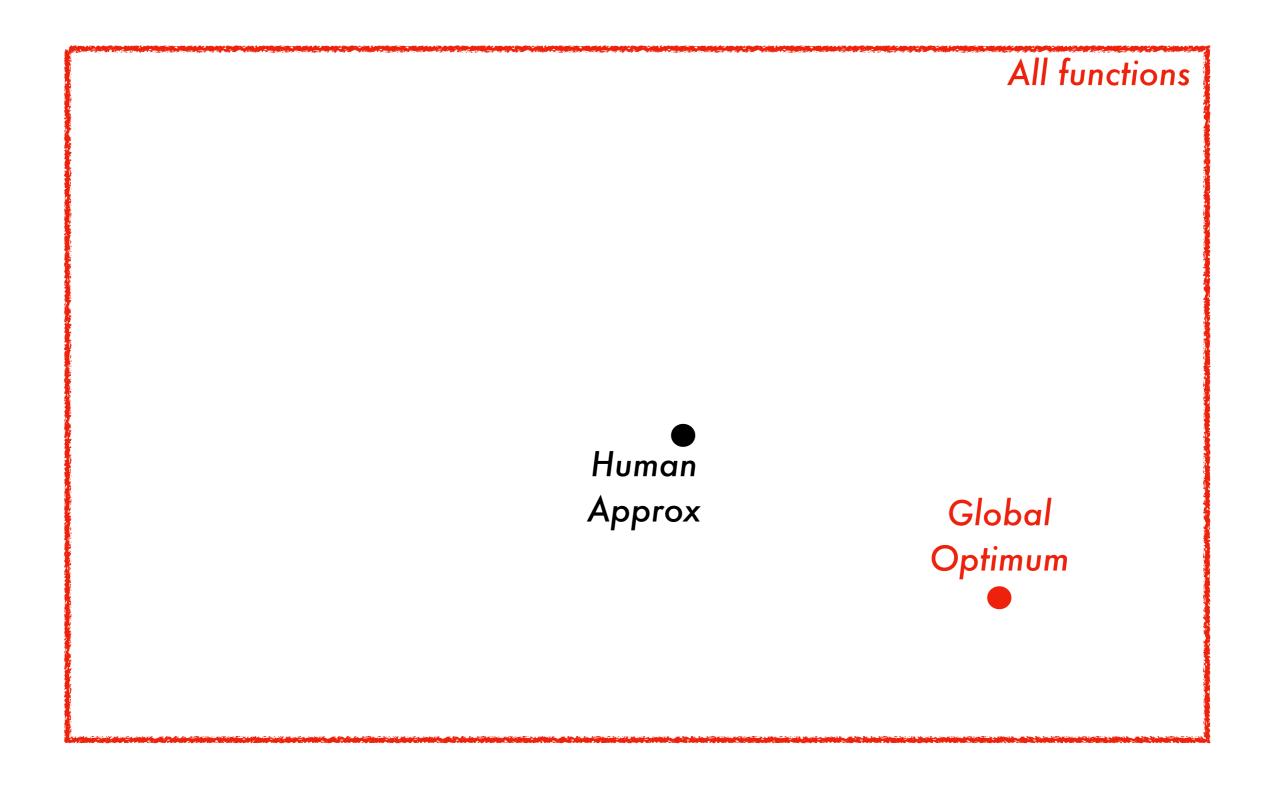
We have a good understanding of all of the pieces

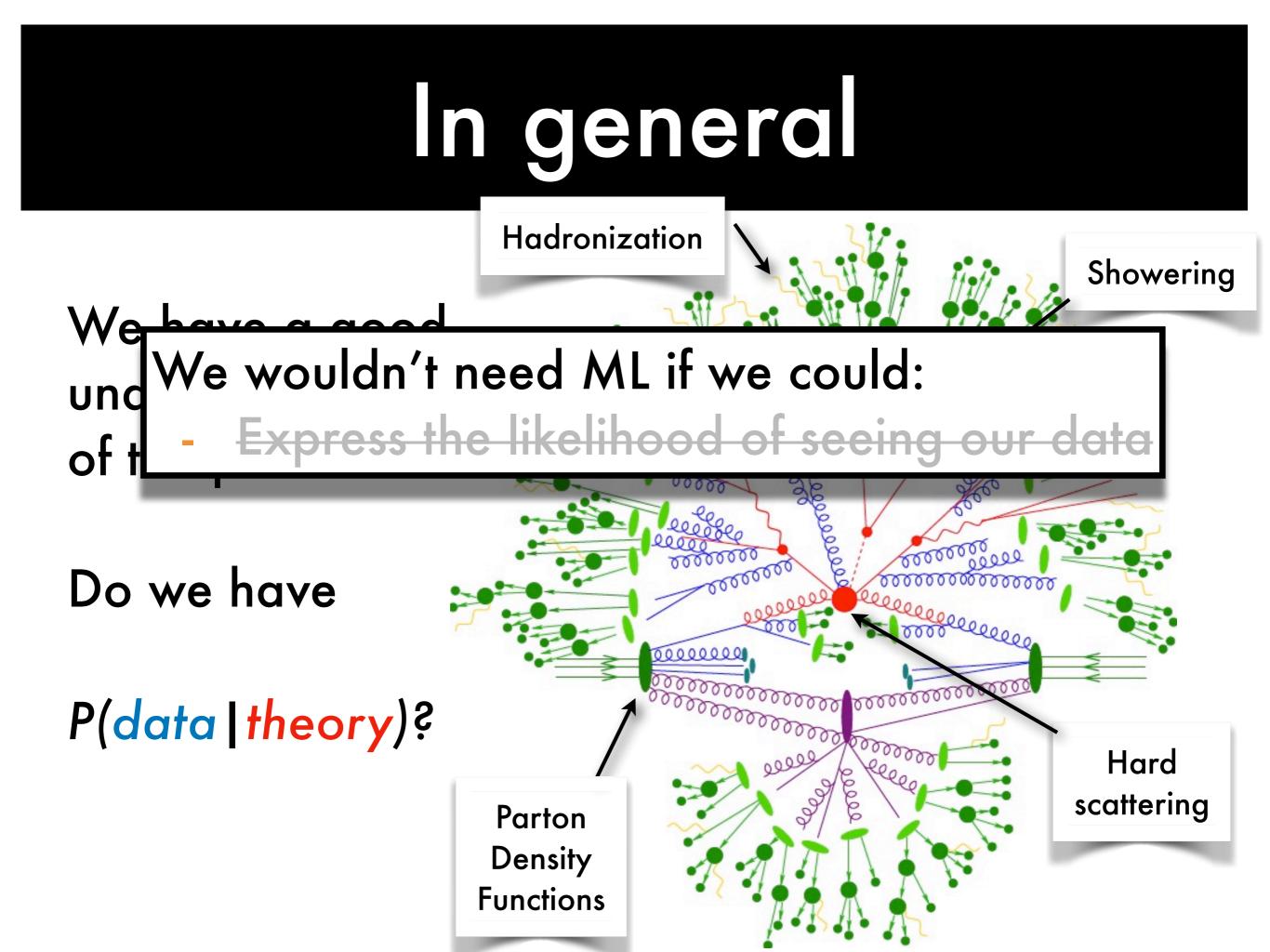
Do we have

P(data | theory)



Functional space





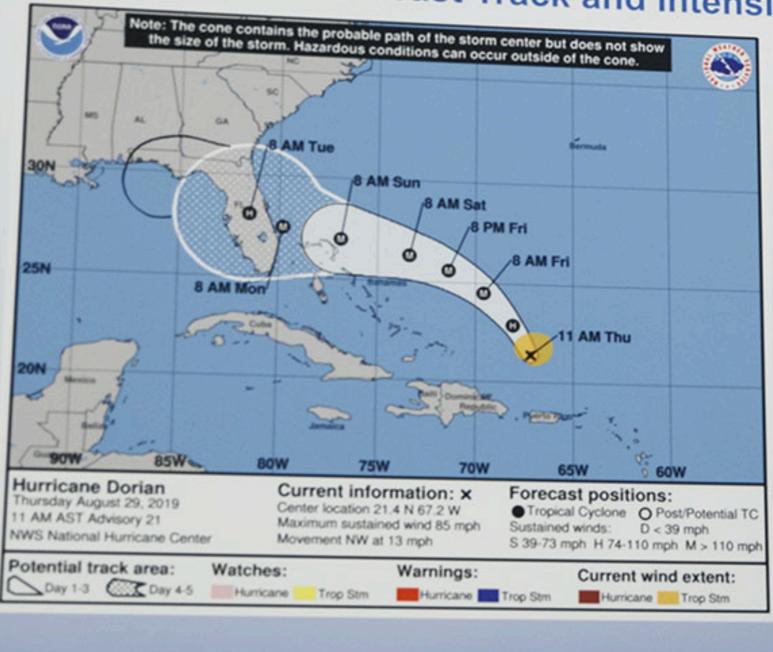
We can't calculate

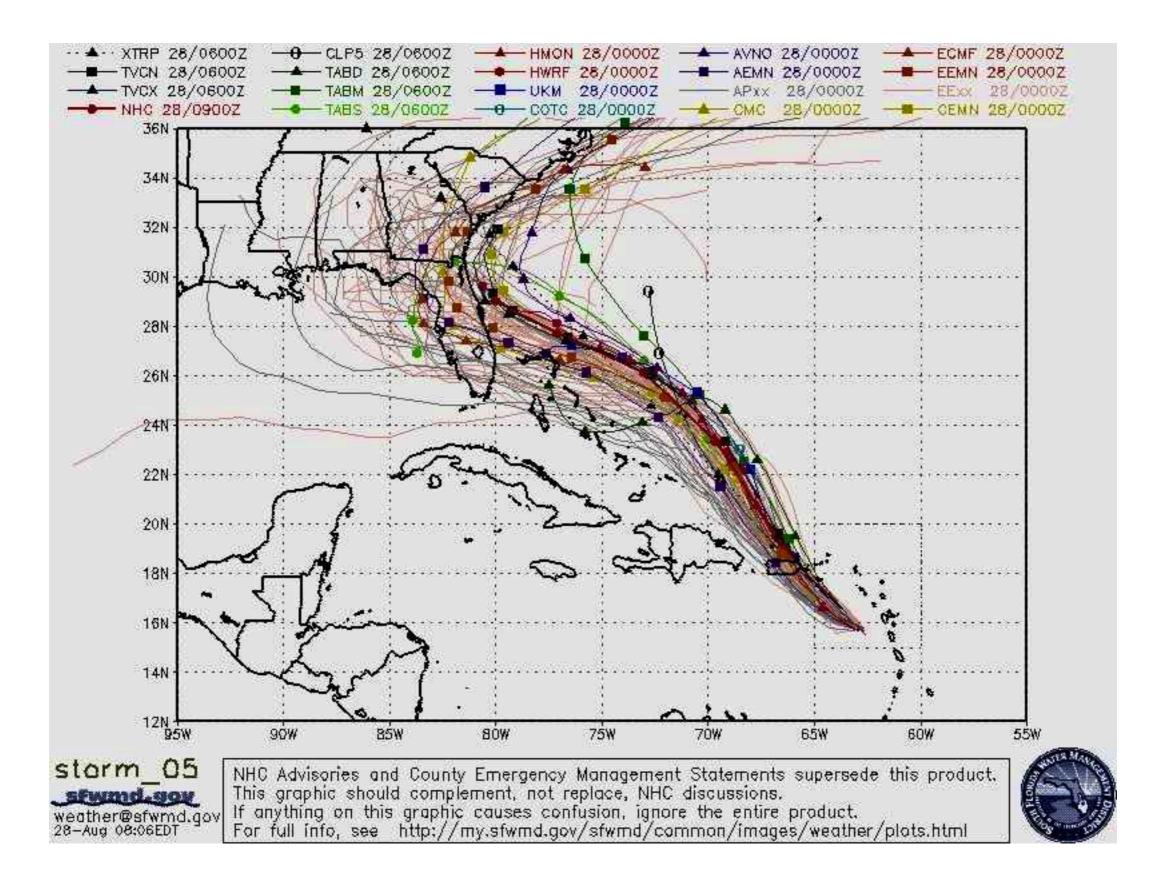
P(data | theory)

.... but we can simulate it!

NORR

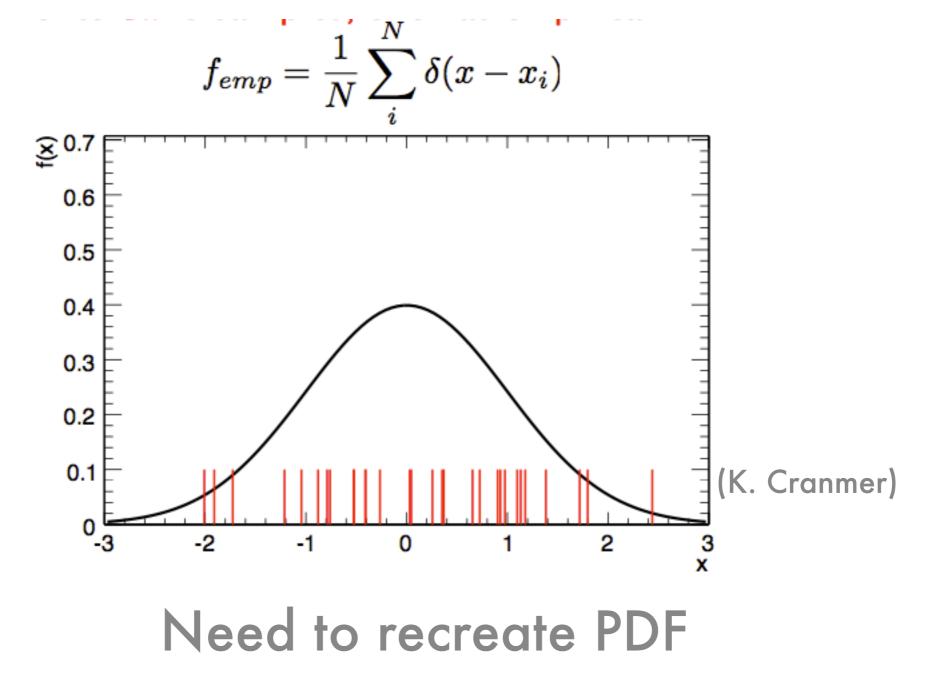
Hurricane Dorian Forecast Track and Intensity





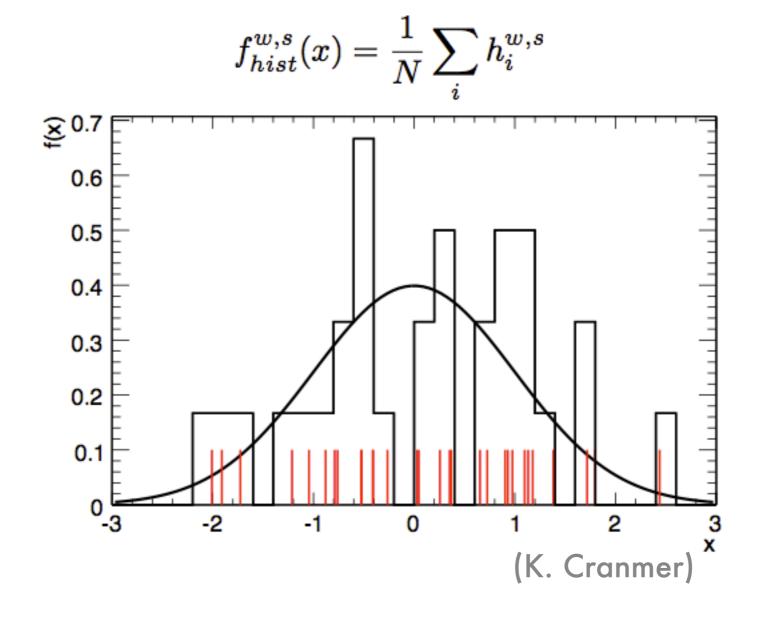
The problem

Don't know PDF, have events drawn from PDF



MC events to PDF

Simple approach : histogram

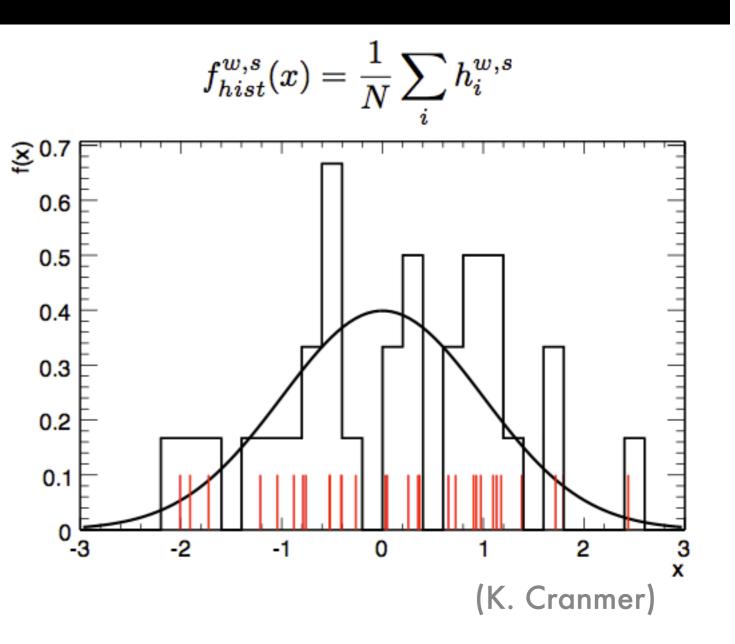


Curse of Dimensionality

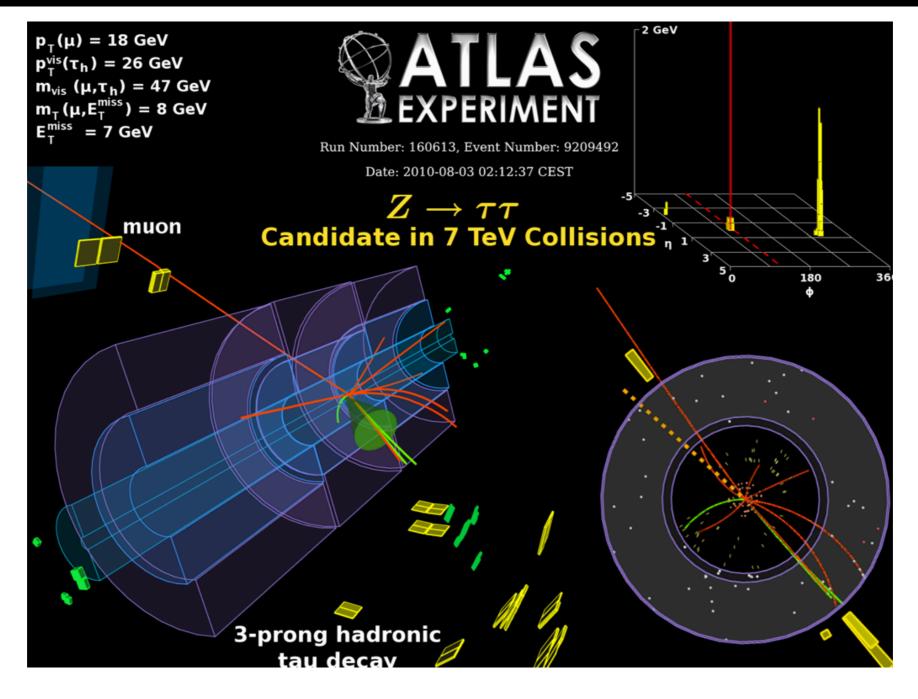
How many events do you need to describe a 1D distribution? O(100)

An n-D distribution?

O(100ⁿ)

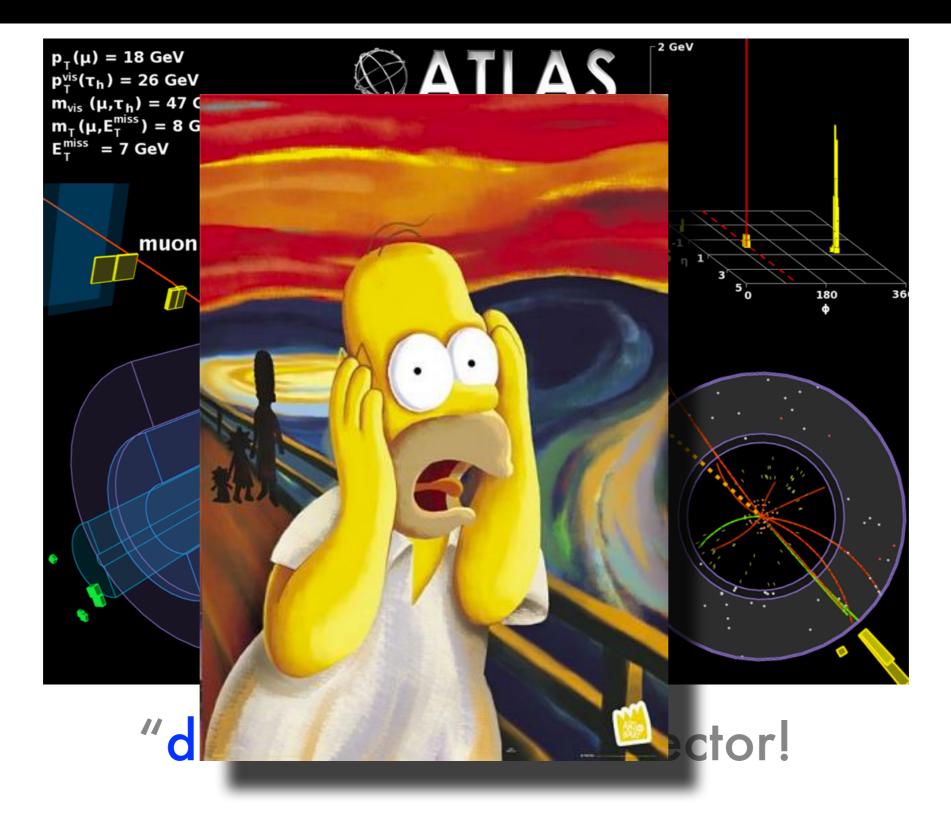


The nightmare



"data" is a 100M-d vector!

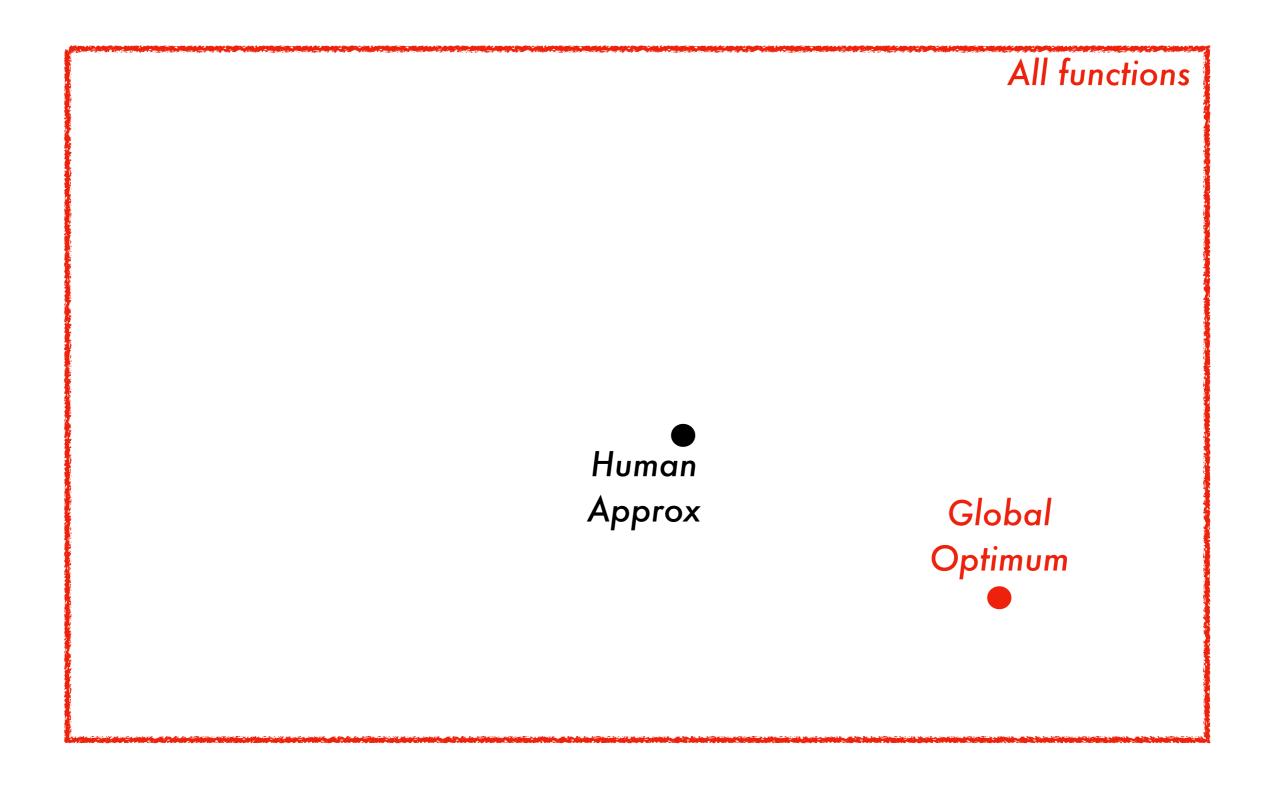
The nightmare



The nightmare

tor!

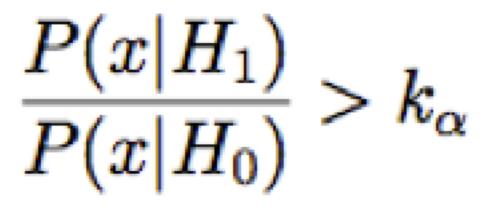
Functional space



Task for ML

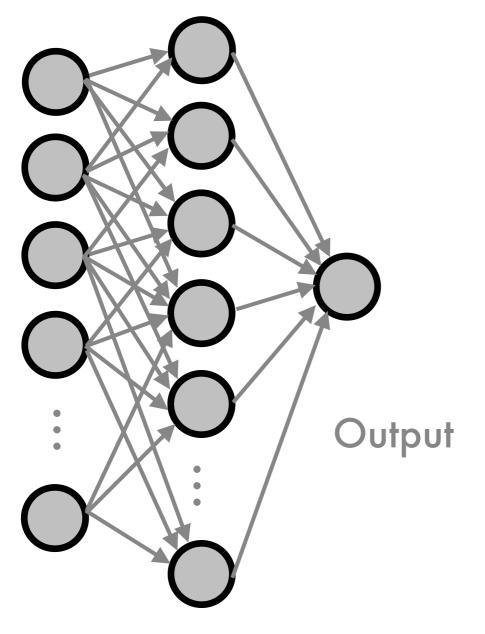
Find a function: $f(\bar{x}): \mathrm{I\!R}^N \to \mathrm{I\!R}^1$ which contains the same hypothesis testing power

as



How complex?

Essentially a functional fit with many parameters



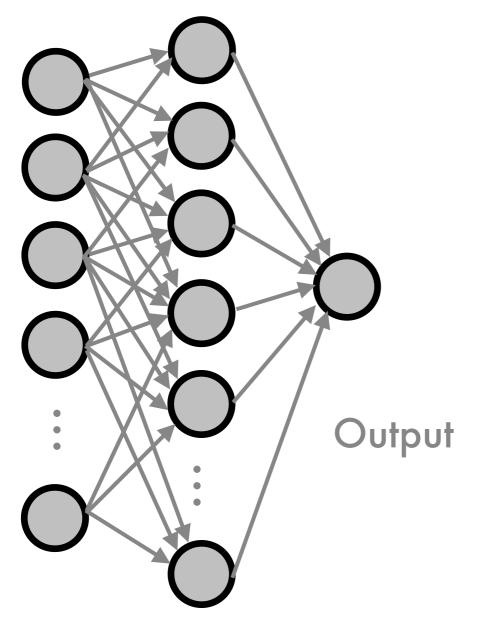
<u>Single hidden layer</u>

In theory any function can be learned with a single hidden layer.

Input Hidden

How complex?

Essentially a functional fit with many parameters

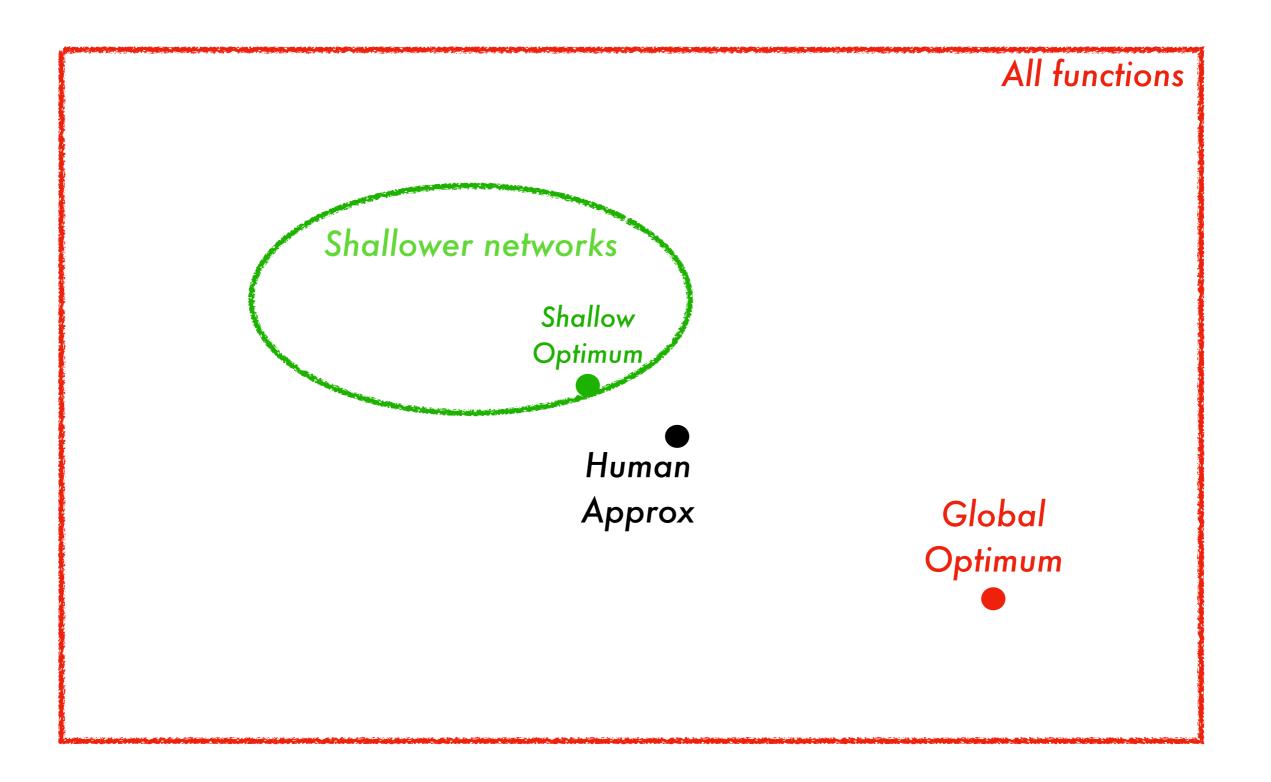


<u>Single hidden layer</u>

In theory any function can be learned with a single hidden layer.

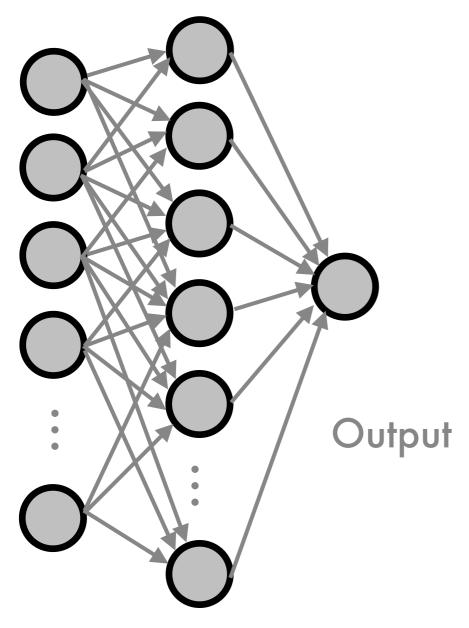
But might require very large hidden layer to learn non-linear functions

Shallow space



Neural Networks

Essentially a functional fit with many parameters



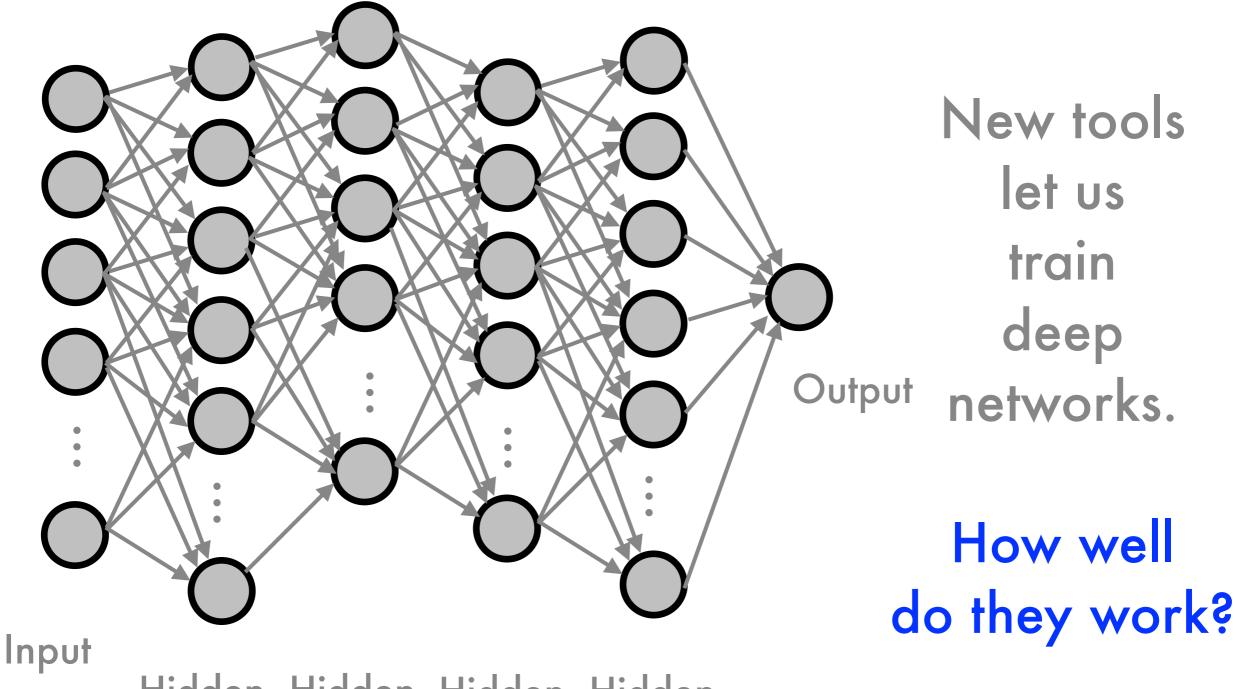
Consequence:

Networks are not good at learning non-linear functions. (like invariant masses!)

<u>In short:</u> Couldn't just throw data at NN.

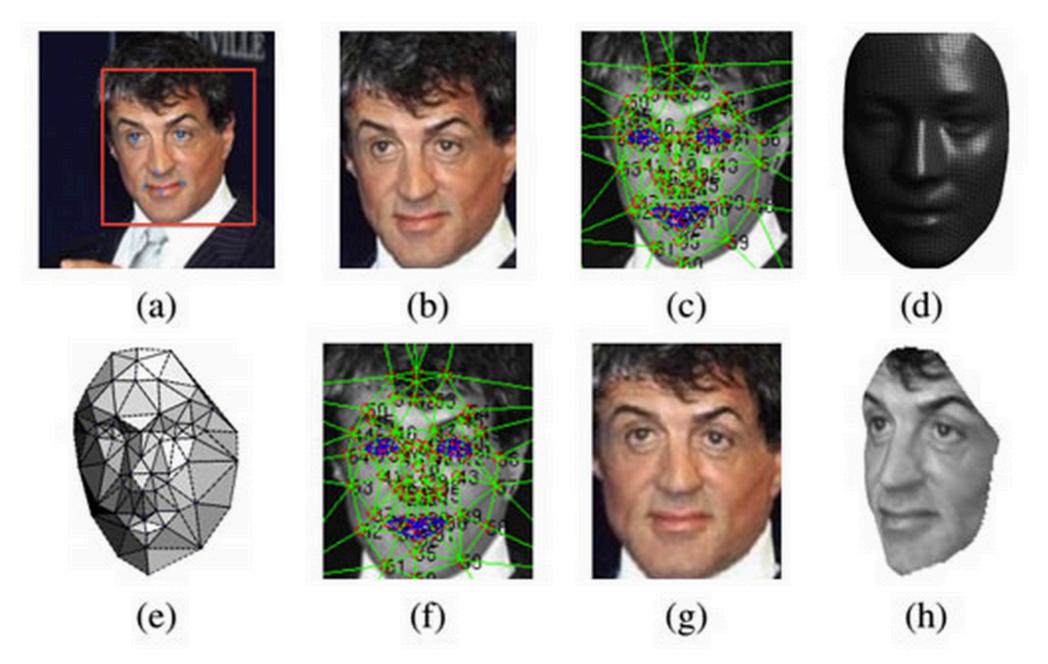
Input Hidden

Deep networks



Hidden Hidden Hidden Hidden

Real world applications



Head turn: DeepFace uses a 3-D model to rotate faces, virtually, so that they face the camera. Image (a) shows the original image, and (g) shows the final, corrected version.

Paper

MMUNICATIONS

Received 19 Feb 2014 | Accepted 4 Jun 2014 | Published 2 Jul 2014

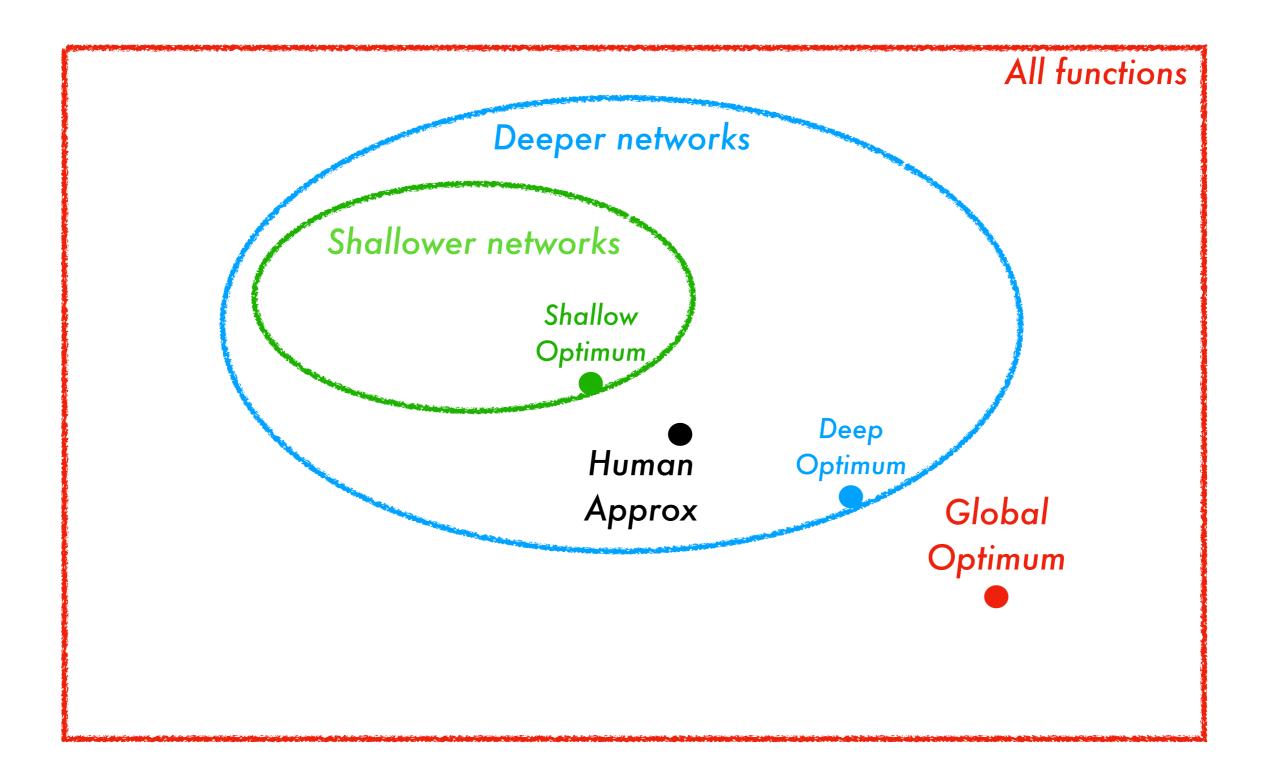
DOI: 10.1038/ncomms5308

Searching for exotic particles in high-energy physics with deep learning

P. Baldi¹, P. Sadowski¹ & D. Whiteson²

arXiv: 1402.4735

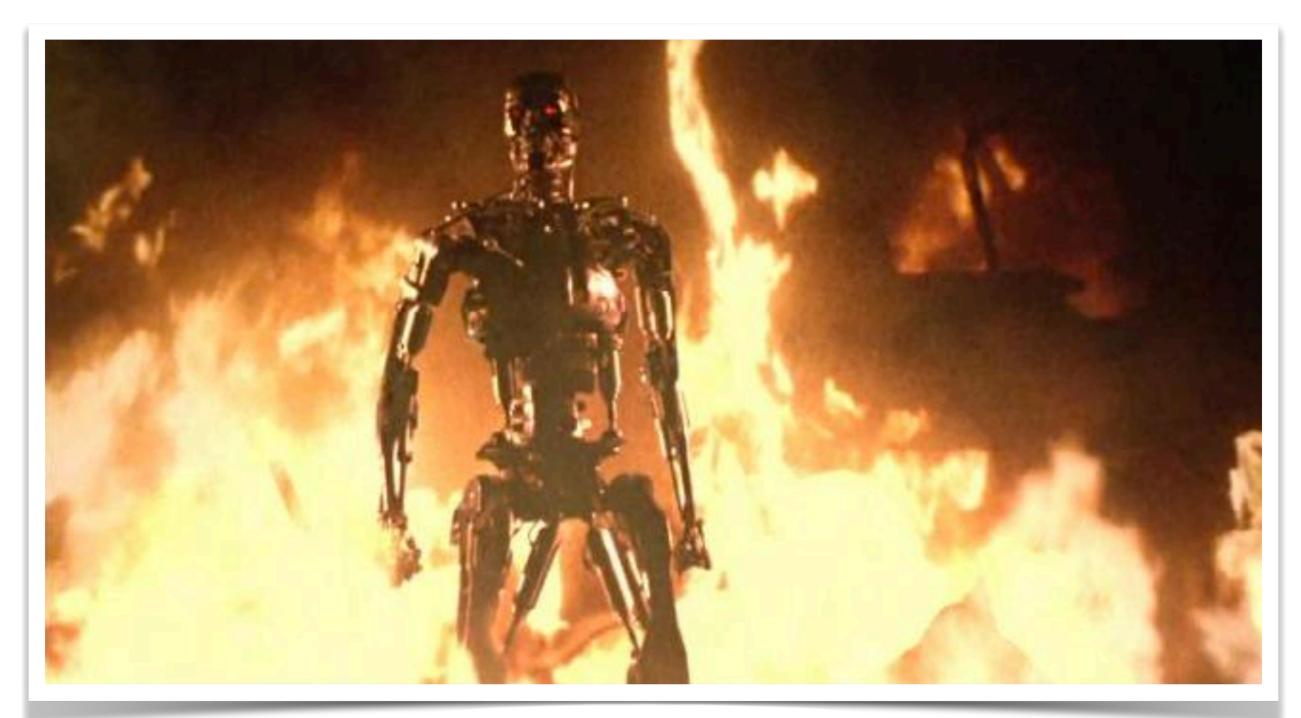
Expanding space



Results

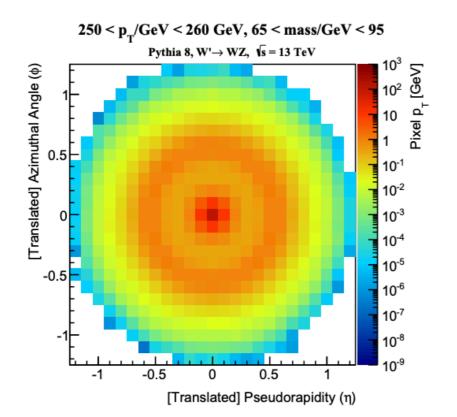
Deep networks succeed without human insight. Outperform shallow networks and human ideas.

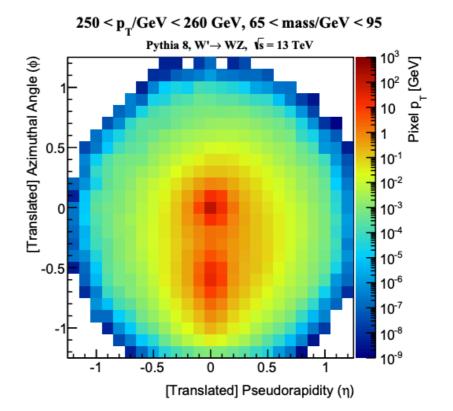
The Als win



Low level data

Calorimeter pixels

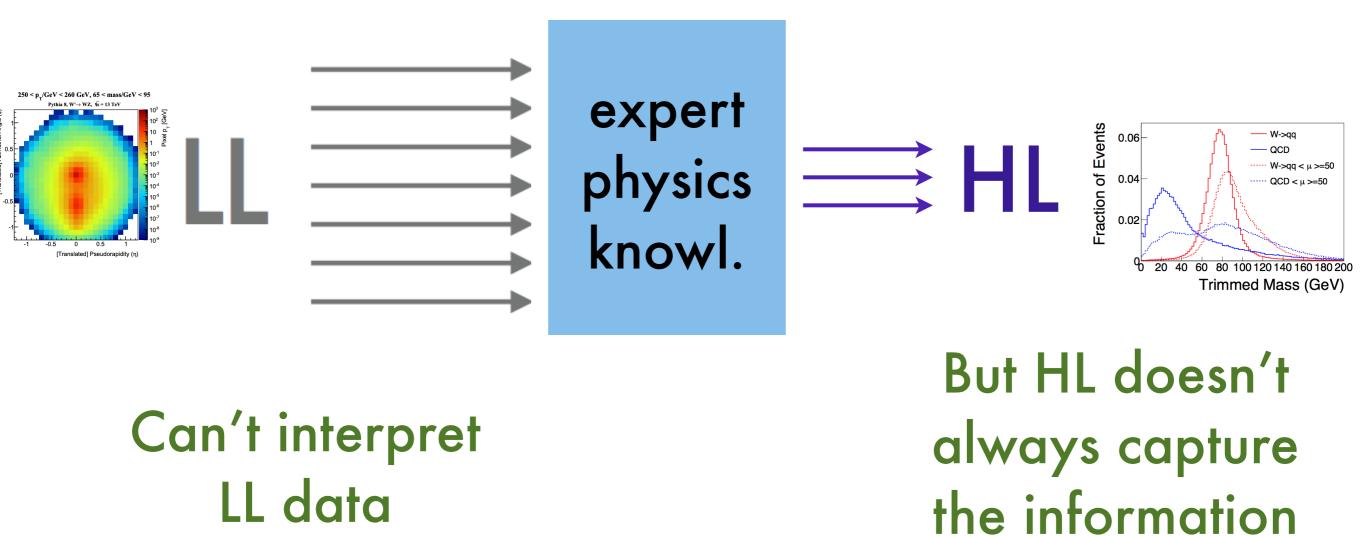




Networks beat experts!

What is it doing?

Our low-level (LL) data are often high-dim



Yet we prefer HL

If HL data includes all necessary information...

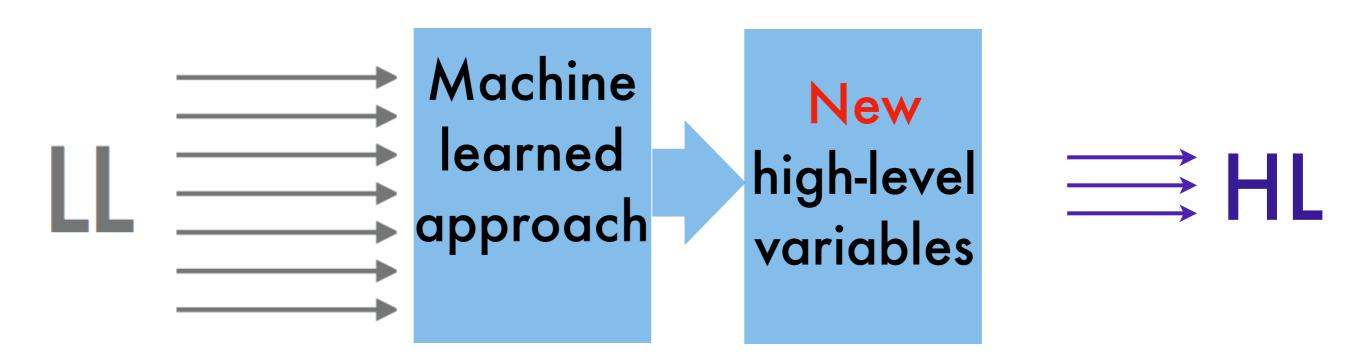
- It is easier to understand
- Its modeling can be verified
- Uncertainties can be sensibly defined
- It is more compact and efficient

- LL -> HL is physics, so we like it.

Our question

What can we learn from the machine?

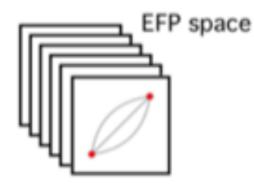
Learning from ML

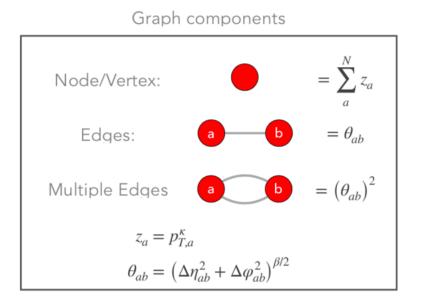


Use LL analysis as a probe, not a final product.

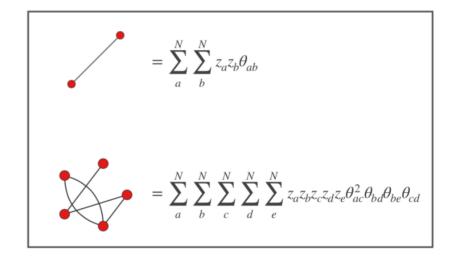
Hows

Define the language

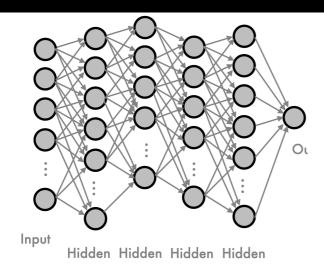


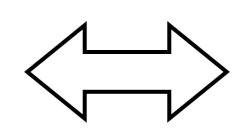


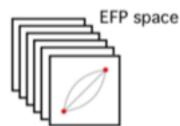
Examples



Mapping

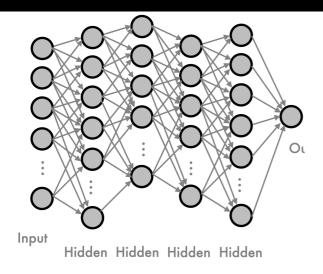


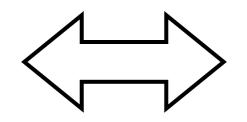


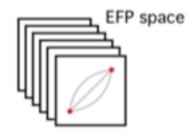


How to map from deep network into our space of interpretable observables?

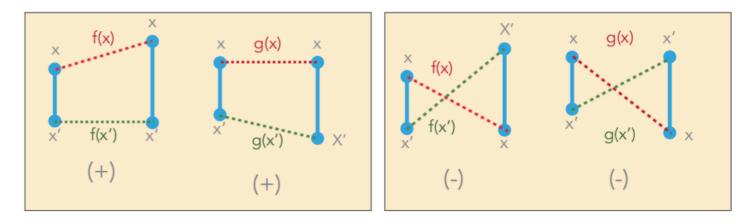
Mapping







Similar Orderings

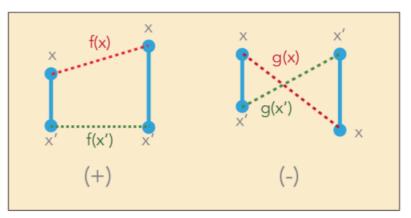


Function sameness

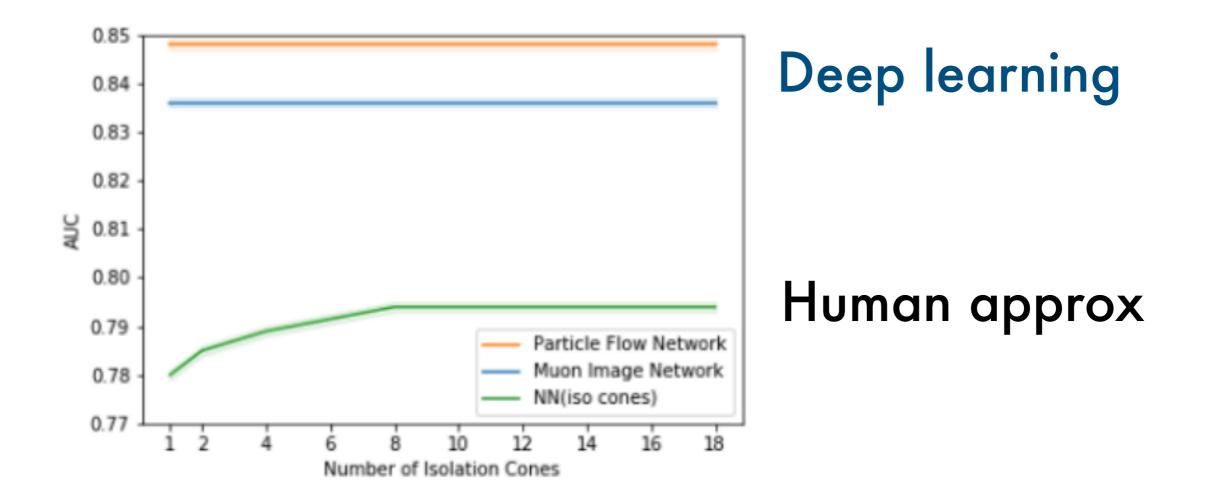
Complete equivalence not important

Only care about the ordering of points

Dissimilar Orderings



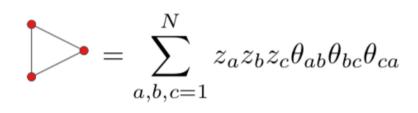
Results

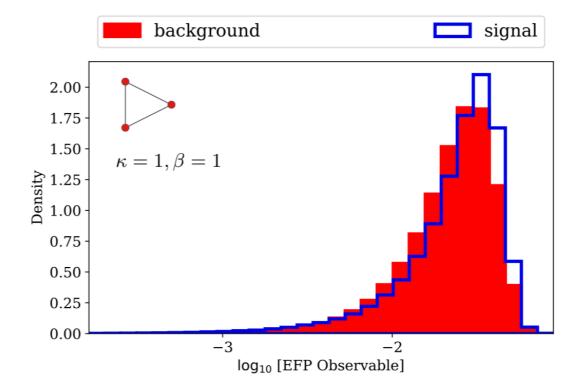


More iso cones improves performance Isolation cannot match calo-cell networks

Useful observable

This observable helps!





Procedure also works in real data without any labels

Conclusions

<u>Deep Learning is a powerful new tool</u> offers faster learning of nonlinear functions

<u>We have many appropriate tasks in HEP</u> traditional heuristics should be re-examined

No replacement for human intelligence garbage in will still give garbage out