ML for Fundamental Physics: From the Smallest to the Largest Scales

IAS Geneva 2023

David Shih October 4, 2023

RUTGERS

THE STATE UNIVERSITY OF NEW JERSEY

The Standard Model of Particle Physics

The Standard Model describes all known fundamental matter and its interactions in the Universe.

The Standard Model of Particle Physics

Source: The Economist

Beyond the Standard Model

dark matter

neutrino masses

matter/anti-matter asymmetry

We know there must be "new physics" beyond the Standard Model...

Beyond the Standard Model

hierarchy problem

strong CP problem

grand unification

Second Third First Generation Generation Generation 10^{3} Top quark 0 102 Bottom guark 10¹ Charm quark 10 [10-] Strange quark Muon electron Down guark 10 -egig] sseM Up guark

Electron

10-4

flavor puzzle

FERMIONS

$$\tilde{G}^{\mu\nu}$$

We know there must be "new physics" beyond the Standard Model...

Searching for new physics at the smallest scales: Colliders

Directly produce the new physics

ing transverse momentum, nferred from momentum conservation

> Invisible Dark Matter particle

LHC detector transverse cross-section

Indirect effects of new physics (precision tests of the Standard Model)

-2-

Searching for new physics at the largest scales: Astro/Cosmo

Calactic

Astrophysical probes of dark matter

Fermi smoothed all-sky map

Early universe cosmology

Era of Big Data in HEP/Astro/Cosmo

- LHC: 2010+, 10^{15} events, 10^2 PB (and growing)
- Euclid: 2021+, 10^{10} objects, 10^2 PB
- Rubin (LSST): 2024(exp), 10^{10} objects, 10^2 PB
- Roman: 2027(exp), 10^9 objects, 10^1 PB
- SKA: 2030(exp), ~1-10 EB

Modern ML methods will be essential to get the most out of these rich datasets

The Big Data era, already familiar to HEP, is coming for Astro/Cosmo

Modern machine learning is a **powerful new tool** which allows us to see farther into the data than ever before.

- **Enabling** new analyses that were previously impossible
- **Enhancing** sensitivity and precision
- Accelerating simulation and inference
- Unifying solutions to problems across different datasets and domains

ML for HEP

Not possible to survey everything in this talk!

Instead, will highlight selected examples

New physics searches Triggering

> **Reconstruction**/ Identification

Fast simulation

Measurement

Theory

CMS (preliminary)

Moriond 2019

Z'→ZH (ℓℓbb̄ + vvbb̄)	B2G-17-004	6.0		
Z'→ZH (qą̄bb̄)	B2G-17-002	6.8		
Z'→ZH (qq̄ττ)	B2G-17-006 25.0			
N/T (all final states)	B2G-18-006		0.2	

All but a few of these LHC searches are optimized for specific models

There could be vast, untapped discovery potential with ML-powered model-agnostic searches

The LHC Olympics 2020

A Community Challenge for Anomaly Detection in High Energy Physics

Gregor Kasieczka (ed),¹ Benjamin Nachman (ed),^{2,3} David Shih (ed),⁴ Oz Amram,⁵ Anders Andreassen,⁶ Kees Benkendorfer,^{2,7} Blaz Bortolato,⁸ Gustaaf Brooijmans,⁹ Florencia Canelli,¹⁰ Jack H. Collins,¹¹ Biwei Dai,¹² Felipe F. De Freitas,¹³ Barry M. Dillon,^{8,14} Ioan-Mihail Dinu,⁵ Zhongtian Dong,¹⁵ Julien Donini,¹⁶ Javier Duarte,¹⁷ D. A. Faroughy¹⁰ Julia Gonski,⁹ Philip Harris,¹⁸ Alan Kahn,⁹ Jernej F. Kamenik,^{8,19} Charanjit K. Khosa,^{20,30} Patrick Komiske,²¹ Luc Le Pottier,^{2,22} Pablo Martín-Ramiro,^{2,23} Andrej Matevc,^{8,19} Eric Metodiev,²¹ Vinicius Mikuni,¹⁰ Inês Ochoa,²⁴ Sang Eon Park,¹⁸ Maurizio Pierini,²⁵ Dylan Rankin,¹⁸ Veronica Sanz,^{20,26} Nilai Sarda,²⁷ Uroš Seljak,^{2,3,12} Aleks Smolkovic,⁸ George Stein,^{2,12} Cristina Mantilla Suarez,⁵ Manuel Szewc,²⁸ Jesse Thaler,²¹ Steven Tsan,¹⁷ Silviu-Marian Udrescu,¹⁸ Louis Vaslin,¹⁶ Jean-Roch Vlimant,²⁹ Daniel Williams,⁹ Mikaeel Yunus¹⁸

https://arxiv.org/abs/2101.08320

https://arxiv.org/abs/2105.14027

The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event Classification for the Large Hadron Collider

T. Aarrestad^a M. van Beekveld^b M. Bona^c A. Boveia^e S. Caron^d J. Davies^c A. De Simone^{f,g} C. Doglioni^h J. M. Duarteⁱ A. Farbin^j H. Gupta^k L. Hendriks^d L. Heinrich^a J. Howarth^l P. Jawahar^{m,a} A. Jueidⁿ J. Lastow^h A. Leinweber^o J. Mamuzic^p E. Merényi^q A. Morandini^r P. Moskvitina^d C. Nellist^d J. Ngadiuba^{s,t} B. Ostdiek^{u,v} M. Pierini^a B. Ravina^l R. Ruiz de Austri^p S. Sekmen^w M. Touranakou^{x,a} M. Vaškevičiūte^l R. Vilalta^y J.-R. Vlimant^t R. Verheyen^z M. White^o E. Wulff^h E. Wallin^h K.A. Wozniak^{α,a} Z. Zhang^d

A lot of new ideas for model-agnostic searches!

from 2109.00546

FETA [Golling et al <u>2212.11285</u>]

ML-enhanced bump hunts

- *x*: *additional* features where NP could be localized
- Learn model-agnostic **anomaly score** R(x) from data

ML-enhanced bump hunts

New methods can achieve impressive performance gains over the inclusive bump hunt.

On this signal, ~ 2σ inclusive dijet ==> up to ~ 30σ with CATHODE method [DS+ Hallin et al 2109.00546]

New physics could be hiding in the data right now!

From proof-of-concept to reality

Proofs-of-concept are becoming actual LHC searches!

From LHC -> Astro

Searching for Stellar Streams in Gaia

- could be applied to Gaia data to search for stellar streams
 - An example of power of ML to cut across domains!

• We realized the same ML-enhanced bump hunt methods developed for LHC

Gaia satellite:

- Launched in 2013; ongoing
- Angular positions, proper motions, color and magnitude of over **1 billion stars** in our Galaxy
- Distances and radial velocities for a smaller subset of nearby stars

Stellar Streams

credit: Gabriel Pérez Díaz

Collection of stars moving together along a common orbit — concentrated spatially and in velocity.

Stellar streams are the very old remnants of tidally disrupted globular clusters and dwarf galaxies.

credit: S. Payne-Wardenaar / K. Malhan, MPIA

Stellar Streams

Stellar streams could be unique astrophysical probes into dark matter substructure

Known Stellar Streams of the Milky Way

Via Machinae

[DS, Buckley, Necib '23] [DS, Buckley, Necib, Tamanas '21]

- Streams are local overdensities in multiple features ideal for enhanced bump hunt methods!
- Choose either proper motion coordinate as resonant feature
- Learn anomaly score (using normalizing flows) with remaining five features \bullet

Core method — illustrated with GD-1 Stream

[DS, Buckley, Necib, Tamanas '21]

Fully data driven, simulation independent!

All stars in a patch of the sky containing (part of) GD-1 (ra,dec)=(148.6,24.2)

Stars in SR after cut on R(x)obtained from ANODE

The method works!

New stream candidates from Gaia DR2

[DS, Buckley, Necib 2303.01529]

Applied to Gaia DR2: many (~ 80-90) new streams potentially discovered!

Direct phase space density estimation of stellar tracers from Gaia

Buckley, Lim, Putney & **DS** <u>2205.01129</u>, <u>2305.13358</u> Green et al 2011.04673, 2205.02244, Naik et al 2112.07657, An et al 2106.05981

- interesting applications
- the nearby ones) carries a wealth of information about Galactic dynamics.
- In particular, we can directly infer the mass density $\rho(\vec{x})$ of the Galaxy from

We realized that training normalizing flows on the Gaia dataset could have other

• The full 6D phase space density $p(\vec{x}, \vec{v})$ of all the stars in the Galaxy (or at least all

knowledge of $p(\vec{x}, \vec{v})$, and from that the mass density $\rho_{DM}(\vec{x})$ of the dark matter.

Local dark matter density

Knowing the local dark matter density $\rho_{DM}(x)$ is very important for many reasons:

formation and nature of dark matter

Could potentially resolve the presence of dark matter substructure

Idea: mass density from phase space density

Buckley, Lim, Putney & DS 2205.01129, 2305.13358 Green et al 2011.04673, 2205.02244, Naik et al 2112.07657, An et al 2106.05981

- Liouville theorem: phase space density is conserved
- ranged gravitational force
- So they must obey the collisionless Boltzmann equation:

$$\frac{\partial}{\partial t} + \vec{v} \cdot \frac{\partial}{\partial \vec{x}} + \vec{a}(\vec{x}) \cdot \frac{\partial}{\partial \vec{v}} \bigg] p(\vec{x}, \vec{v};$$

Accelerations: $\vec{a}(\vec{x}) = -\nabla \Phi(\vec{x})$

 $\Phi(\vec{x})$: gravitational potential of the Galaxy (DM+stars+gas...)

• Stars are well-approximated as collisionless, only interacting through long-

Dynamical equilibrium (expected to be approximately valid) t) = 0

Idea: mass density from phase space density

Buckley, Lim, Putney & **DS** <u>2205.01129</u>, <u>2305.13358</u> Green et al 2011.04673, 2205.02244, Naik et al 2112.07657, An et al 2106.05981

$$\left[\vec{v}\cdot\frac{\partial}{\partial\vec{x}} + \vec{a}(\vec{x})\cdot\frac{\partial}{\partial\vec{v}}\right]p(\vec{x},\vec{v}) = 0$$

- Just from knowledge of $p(\vec{x}, \vec{v})$ and its derivatives we can determine the accelerations $\vec{a} = -\nabla \Phi$
- Taking another derivative gives us the mass density of the Galaxy!

$$4\pi G\rho = \nabla^2 \Phi = \nabla \cdot \vec{a}$$

Comparison with previous approaches

- Existing measurements typically use **Jean's equation** (second moment of Boltzmann equation) or rotation curves
- They make many assumptions (axisymmetry, reflection) symmetry, simple parametric models...) and **bin the data**
- Results can seem precise but might not be accurate (biased)

Our approach using normalizing flows is model-free, does not assume symmetries, and is unbinned

First ever fully 3d measurement of dark matter density in the solar neighborhood

Lim, Putney, Buckley & **DS** 2305.13358

Error bars include:

 MAF training variance • Finite training statistics Gaia measurement error

Density	$(10^{-2}~M_{\odot}/{ m pc}^3)$	$({ m GeV/cm^3})$
$ ho_{\odot}$	6.17 ± 0.20	2.34 ± 0.08
$ ho_{b,\odot}$	5.34 ± 0.42	2.03 ± 0.16
$ ho_{ m DM,\odot}$	0.83 ± 0.47	0.32 ± 0.18
$\overline{ ho}_{ m DM}(r=r_{\odot})$	1.18 ± 0.14	0.47 ± 0.05

Result is consistent with nonzero, spherically symmetric DM density!

Lim, Putney, Buckley & **DS** 2305.13358

Excellent agreement with previous measurements, with hopefully more realistic error bars

Lim, Putney, Buckley & **DS** 2305.13358

Radial profile broadly consistent with recent NFW fits

Summary/Outlook

- physics with Big Data.
- There has been an explosion of new methods and proofs-of-concept.
- Astro/Cosmo domains.
- These are exciting times! New discoveries await!

Modern machine learning is a powerful new tool revolutionizing fundamental

Many new methods are beginning to be applied to real data in the HEP and

Thanks for your attention!

Backup

Example: <u>Classifying Anomalies THrough Outer Density Estimation (CATHODE)</u>

DS+ Hallin et al 2109.00546, 2210.14924

from <u>2109.00546</u>

 Train generative model (eg normalizing flow) on sidebands to learn background model

 $p_{data}(x \mid m \in SB) = p_{bg}(x \mid m \in SB)$

2. Sample from this model for $m \in SR$ to obtain synthetic background events in the *signal region*.

3. Train binary classifier on data vs synthetic background to learn n_{x} (x)

$$R(x) = \frac{p_{data}(x)}{p_{bg}(x)}$$

From proof-of-concept to real data Buckley, Lim, Putney & DS 2205.01129, 2305.13358

- After validating our method with a realistic hydrodynamical cosmological simulation, we applied it to Gaia DR3.
- Selected stars in Gaia DR3 within 4 kpc with
 - full 6d features \bullet
 - brightness cut to ensure completeness \bullet
- dominated by "red clump" stars which are supposed to be a good equilibrium tracer population => 5.8M stars

Results: density estimation

Lim, Putney, Buckley & **DS** 2305.13358

Results: accelerations

Lim, Putney, Buckley & **DS** 2305.13358

Symmetries to ~10% level:

- north-south
- azimuthal (phi)

=> Expected from dynamical equilibrium

	Gaia EDR3 [56]	This work
$a_x (10^{-10} \mathrm{m/s^2})$	-2.32 ± 0.16	-1.94 ± 0.22
$a_y \ (10^{-10} \mathrm{m/s^2})$	0.04 ± 0.16	0.08 ± 0.08
$a_z \ (10^{-10} \mathrm{m/s^2})$	-0.14 ± 0.19	-0.06 ± 0.08
$ \vec{a} \ (10^{-10} \mathrm{m/s^2})$	2.32 ± 0.16	1.94 ± 0.22

TABLE I: Galactic acceleration at the Solar location \vec{a}_{\odot} in Cartesian coordinates, calculated by averaging the solution to the Boltzmann equation within a 100 pc sphere centered on the Sun. We list for comparison the acceleration at the Solar location obtained from *Gaia* DR3 quasar measurements [56].

More on determining the accelerations

Buckley, Lim, Putney & **DS** <u>2205.01129</u>, <u>2305.13358</u> Green et al 2011.04673, 2205.02244, Naik et al 2112.07657, An et al 2106.05981

$$\left[\vec{v}\cdot\frac{\partial}{\partial\vec{x}} + \vec{a}(\vec{x})\cdot\frac{\partial}{\partial\vec{v}}\right]p(\vec{x},\vec{v}) = 0$$

- How can we solve for 3 acceleration functions $\vec{a}(\vec{x})$ with just a single equation?
- one for each choice of \vec{v}
- best-fit $\vec{a}(\vec{x})$

$$L(\vec{a}(\vec{x})) = \frac{1}{N} \sum_{\alpha=1}^{N} \left(\left[\vec{v}_{\alpha} \cdot \frac{\partial}{\partial \vec{x}} + \vec{a}(\vec{x}) \cdot \frac{\partial}{\partial \vec{v}} \right] p(\vec{x}, \vec{v}_{\alpha}) \right)^{2}$$

 $\vec{a}(\vec{x})$ doesn't depend on velocity! So this is actually an infinite number of equations for $\vec{a}(\vec{x})$,

We choose to perform least-squares minimization over a sample of velocities to determine

Proof-of-concept

Buckley, Lim, Putney & **DS** <u>2205.01129</u>

- Training data: state-of-the-art Nbody+hydro galaxy simulation from "Nbody shop" collaboration [https://b2share.eudat.eu/records/c9f232d8ac804785aad35004177a704e]
- Milky Way like Galaxy h277

- number of stars star particles 153,174 (<< size of Gaia 6D dataset)
- observer's location
 - [8.122, 0., 0.0208] kpc
- observing radius = 3.5 kpc
- simulation resolution: 0.173 kpc
- Using only kinematic information: position and velocity

Results: density estimation

Buckley, Lim, Putney & **DS** <u>2205.01129</u>

Results: accelerations

Buckley, Lim, Putney & **DS** <u>2205.01129</u>

Accelerations to within 5% accuracy!

We estimated uncertainties from:

- random training initialization
- finite training data statistics (bootstrap)
- measurement error

Buckley, Lim, Putney & **DS** <u>2205.01129</u>

Mass density to within 10-20% accuracy!

We estimated uncertainties from:

- random training initialization
- finite training data statistics (bootstrap)
- measurement error

The Galaxy is a dusty place

Lim, Putney, Buckley & **DS** 2305.13358

The Galaxy is a dusty place

Lim, Putney, Buckley & **DS** 2305.13358

- In this first work we did not attempt to correct for dust extinction (this is work in progress).
- Rather we explored our results along 1d slices that should avoid the worst of the dust effects.

