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The Standard Model of Particle Physics
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3 Forces 17 Particles 19 Parameters

The Standard Model describes all known fundamental matter 
and its interactions in the Universe.



The Standard Model was largely 
established in the ‘60s, ’70s and ‘80s. 


With the discovery of the Higgs boson 
by the LHC in 2012, it is finally complete. 

The Standard Model of Particle Physics
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What “new physics” lies 
beyond the Standard Model?



Beyond the Standard Model
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dark matter matter/anti-matter asymmetry

neutrino masses

We know there must be 
“new physics” beyond the 

Standard Model…



Beyond the Standard Model
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hierarchy problem grand unification
flavor puzzle
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strong CP problem

We know there must be 
“new physics” beyond the 

Standard Model…



Searching for new physics at the smallest scales: Colliders
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Directly produce the new physics


Indirect effects of new physics 
(precision tests of the Standard Model)



Searching for new physics at the largest scales: Astro/Cosmo
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Astrophysical probes of dark matter

Dark matter indirect detection

Gravitational waves

Early universe cosmology



Era of Big Data in HEP/Astro/Cosmo

• LHC: 2010+,  events,  PB (and growing) 

• Euclid: 2021+,  objects,  PB


• Rubin (LSST): 2024(exp),   objects,  PB


• Roman: 2027(exp),   objects,  PB


• SKA: 2030(exp), ~1-10 EB

1015 102

1010 102

1010 102

109 101

8

The Big Data era, 

already familiar to HEP,  

is coming for Astro/Cosmo

Modern ML methods will be essential to get the most out of these rich datasets



ML — a powerful new tool

Modern machine learning is a powerful new tool which allows us to see 
farther into the data than ever before.
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Data Physics
Modern 


Machine Learning

• Enabling new analyses that were previously impossible


• Enhancing sensitivity and precision


• Accelerating simulation and inference


• Unifying solutions to problems across different datasets and domains



ML for HEP

Data
Modern 


Machine Learning

New physics searches

Fast simulation

Triggering

Theory
…
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Reconstruction/
Identification

Not possible to survey everything in this talk! 

Instead, will highlight selected examples 

Measurement



ML for New Physics Searches
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Status of NP searches at LHC

By now, hundreds (thousands?) of searches for new physics at the LHC.

Is there really no new physics in the LHC data?



ML for New Physics Searches
All but a few of these LHC searches are 

optimized for specific models

There could be vast, untapped discovery potential with  
ML-powered model-agnostic searches
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https://arxiv.org/abs/2101.08320

https://arxiv.org/abs/2105.14027
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A lot of new ideas for model-agnostic searches!

https://arxiv.org/abs/2101.08320
https://arxiv.org/abs/2105.14027


ML for New Physics Searches
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Figure 1: The schematic diagram of an autoencoder. The input is mapped into a low(er) dimensional
representation, in this case 6-dim, and then decoded.

threshold.

For concreteness, we will focus in this work on distinguishing “fat” QCD jets from

other types of heavier, boosted resonances decaying to jets. Building on previous work

on top tagging [12], we will concentrate on machine learning algorithms that take jet

images as inputs. For signal, we will consider all-hadronic top jets, as well as 400 GeV

gluinos decaying to 3 jets via RPV. Obviously, this is not meant to be an exhaustive

study of all possible backgrounds and signals and methods but is just meant to be a

proof of concept. The idea of autoencoders for anomaly detection is fully general and not

limited to these signals. We will comment on other forms of inputs in section 5. Moreover

there are many other anomaly detection techniques that are not based on autoencoder

and/or on reconstruction (loss) which are worth exploring in future work. At the same

time autoencoders have been recently used in other high energy physics applications:

in parton shower simulation [28], for feature selection of a supervised classification [30],

and for automated detection of detector aberrations in CMS [31].

We will explore various architectures for the autoencoder, from simple dense neural

networks to convolutional neural networks (CNNs), as well as a shallow linear represen-

tation in the form of Principal Component Analysis (PCA). We will see that while they

are all e↵ective at improving S/B by factors of ⇠ 10 or more, they have important dif-

ferences. The reconstruction errors of the dense and PCA autoencoders correlate more

highly with jet mass, leading to greater S/B improvement for the 400 GeV gluinos com-

pared to the CNN autoencoder. While this may seem better at first glance, we discuss

how one might want to use an autoencoder that is decorrelated with jet mass, in order

to obtain data-driven side-band estimates of the QCD background and perform a bump

hunt in jet mass. Indeed, we show how cutting on the reconstruction error of the CNN

autoencoder results in stable jet mass distributions, and we show how this can be used

to improve S/B by a factor of ⇠ 6 in a jet mass bump hunt for the 400 GeV gluino

2

Outlier detection 
eg autoencoder based approaches:


Farina, Nakai & DS 1808.08992

Heimel et al 1808.08979

Cerri et al 1811.10276


…….

Ostdiek 2109.01695


Mikuni, Nachman & DS 2111.06417

Dillon et al 2206.14225, 2301.04660


and many, many more!!
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m

a.u.

SB SR SB

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

x

pdata(x|m 2 SR)

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.

Overdensity detection 
CWoLa Hunting [Collins, Howe & Nachman 1805.02664, 1902.02634]


ANODE [Nachman & DS 2001.04990]

SALAD [Andreassen, Nachman & DS 2001.05001]


SA-CWoLa [Benkendorfer et al 2009.02205]

CATHODE, LaCATHODE [DS+ Hallin et al 2109.00546, 2210.14924]


CURTAINS [Raine et al 2203.09470]

FETA [Golling et al 2212.11285]

from 1808.08992

from 2109.00546
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ML-enhanced bump hunts
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Learn model-agnostic anomaly score  from dataR(x)

Cut on 
anomaly score 


R(x)

S/ B ∼ 1

S/ B ≫ 1

provably optimal 

R(x) =
pdata(x)
pbg(x)

: additional features where NP could be localizedx

NP hidden

NP discovered!

~x 2 Rd
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FIG. 6. Background rejection (left) and significance improvement (right) of the various anomaly classifiers as a function of
the signal e�ciency. The solid lines are deduced from a median value of 10 fully independent trainings on the same training,
validation and evaluation set. The uncertainty bands quantify the variance from retraining the NNs on the same, fixed dataset
and are defined such that they contain 68% of the runs around the median.

FIG. 7. Left: Median maximum significance improvement of each method with 10 di↵erent signal injections (leading to a
di↵erent split of training, validation and evaluation sets in each run) at each decreasing value of signal/background ratios.
Here, the 68% hatched uncertainty bands quantify the variance (around the median) from both retrainings of the NN and

random realizations of the training and validation data, including di↵erent realizations of the 1,000 injected signal events.
Right: Achieved maximum significance, which is computed by multiplying the uncut significance by the maximum significance
improvement. Both plots feature the significance without any cut applied in the upper horizontal axis. The dotted lines on the
right hand side denote 3 and 5 sigma significance values.

and the simulation-dependent methods. The fact
that Cathode is only marginally worse than the
idealized anomaly detector (in fact, they are over-
lapping within their respective error bands al-
most everywhere) is truly striking. The idealized
anomaly detector is meant to provide an upper
bound on the performance of any data vs. back-
ground anomaly detection method. The fact that
the Cathode method is nearly saturating it in-
dicates that Cathode is achieving close to opti-
mal performance on the LHCO R&D dataset. Evi-

dently, the background in the SR is being extremely
well modeled by the interpolated conditional den-
sity estimator.

• Finally, we see from Fig. 6 that while Cathode and
the idealized anomaly detector are outperformed
by the supervised classifier at higher signal e�cien-
cies, at lower signal e�ciencies their performances
are all increasingly comparable. The behavior at
high signal e�ciency may be explained by the fact
that there is simply too much background to find
the signal; meanwhile, at low signal e�ciency, the

New methods can achieve impressive performance gains over the inclusive bump hunt.

Significance 
improvement factor over 

inclusive bump hunt 
( )ϵS / ϵB

On this signal, ~2σ inclusive dijet ==> up to ~30σ with CATHODE method [DS+ Hallin et al 2109.00546]

from 2109.00546

New physics could be hiding in the data right now!

Z’

X

Y

q

q

q

q

mY=100 GeV

mZ’=3.5 TeV

mX=500 GeV

LHC Olympics 2020 R&D Dataset

ML-enhanced bump hunts

https://arxiv.org/abs/2109.00546
https://arxiv.org/abs/2109.00546


From proof-of-concept to reality

Proofs-of-concept are becoming actual LHC searches!

fit signal regions are defined as the mJJ signal regions
the NN used for training, combined with the adjacent
halves of the left and right neighboring regions; the fit
sidebands are defined as the complement of the fit
signal regions. An iterative procedure is applied until
the p value from the fit sideband χ2 is greater than
0.05. Since the NN is trained to distinguish the
signal region from its neighboring regions, it is

expected that themJJ spectrum is smooth in the fit sideband
region in the presence or absence of a true signal. First, the
data are fit to dn=dx ¼ p1ð1 − xÞp2−ξ1p3x−p3 , where
x ¼ mJJ=

ffiffiffi
s

p
, pi are fit parameters, and the ξi are chosen

to ensure that the pi are uncorrelated. If the fit quality
is insufficient, an extended function is used instead
[100]: dn=dx ¼ p1ð1 − xÞp2−ξ1p3x−p3þðp4−ξ2p3−ξ3p2Þ logðxÞ.
If the fit quality remains insufficient, a variation of the
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FIG. 2. A comparison of the fitted background and the data in all six signal regions, indicated by vertical dashed lines, and for (a),(c)
ϵ ¼ 0.1 and (b),(d) ϵ ¼ 0.01. Dashed histograms represent the fit uncertainty. The lower panel is the Gaussian-equivalent significance of
the deviation between the fit and data. The fits are performed including the sidebands, but only the signal region predictions and
observations in each region are shown. As the NN is different for each signal region, the presented spectrum is not necessarily smooth.
The top plots (a),(b) show the result without injected signal, and the bottom plots (c),(d) present the same results but with signals injected
only for the NN training at mA ¼ 3 TeV (signal 1) and mA ¼ 5 TeV (signal 2), each with mB ¼ mC ¼ 200 GeV. The injected cross
section for each signal is just below the limit from the inclusive dijet search [100].

PHYSICAL REVIEW LETTERS 125, 131801 (2020)

131801-4
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CWoLa Hunting

ATLAS, PRL 125 131801 (2020)

CWoLa Hunting

RNN VAE

ATLAS-CONF-2022-045

• Beginning of a bigger wave 


• Many more analyses from ATLAS and CMS on the way!


• Enormous discovery potential about to be tapped!



From LHC → Astro
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Searching for Stellar Streams in Gaia

• We realized the same ML-enhanced bump hunt methods developed for LHC 
could be applied to Gaia data to search for stellar streams 

An example of power of ML to cut across domains!

20

Gaia satellite: 

• Launched in 2013; ongoing 


• Angular positions, proper motions, color and magnitude of over 1 
billion stars in our Galaxy


• Distances and radial velocities for a smaller subset of nearby stars
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Stellar Streams
Stellar streams are the very old remnants 
of tidally disrupted globular clusters and 
dwarf galaxies.

Collection of stars moving together along a 
common orbit — concentrated spatially 
and in velocity.

credit: Gabriel Pérez Díaz

credit: S. Payne-Wardenaar / K. Malhan, MPIA



Stellar Streams
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Stellar streams could be unique 
astrophysical probes into dark 
matter substructure dynamical evidence of a dark halo substructure 3

Figure 1. (Top) Likely members of the GD-1 stellar stream, cleanly selected using Gaia proper motions and PanSTARRS
photometry, reveal two significant gaps located at �1 ⇡ �20� and �1 ⇡ �40�, and dubbed G-20 and G-40, respectively. There
is a long, thin spur extending for ⇡ 10� from the G-40 gap. (Bottom) An idealized model of GD-1, whose progenitor disrupted
at �1 ⇡ �20� to produce the G-20 gap, and which has been perturbed by a compact, massive object to produce the G-40 gap.
The orbital structure of stars closest to the passing perturber is distorted into a loop of stars that after 0.5Gyr appears as an
underdensity coinciding with the observed gap, and extends out of the stream similar to the observed spur.

To highlight the complex structure of the GD-1
stream, we present the distribution of likely stream
members at the top of Figure 1. As a first step in find-
ing likely members, we followed Price-Whelan & Bonaca
(2018) in selecting stars consistent with an old and
metal-poor population at a distance of 8 kpc, and mov-
ing retrograde with respect to the Galactic disk, with
proper motions in the GD-1 reference frame (µ�1 , µ�2) ⇡
(�7, 0) mas yr�1. The spatial distribution of these stars
in the �2 direction (i.e. perpendicular to the stream) is
modeled as a combination of a constant background, a
stream component at the location of the main stream
track, and one additional Gaussian component on ei-
ther side of the main stream to capture stream features
beyond the main track. We solved for the normaliza-
tion, position and width of every component by explor-
ing the parameter space with an ensemble MCMC sam-
pler (Foreman-Mackey et al. 2013). We used 256 walkers
that ran for a total of 1280 steps, and kept the final 256
steps to generate posterior samples in these parameters.
The above procedure is a full-stream generalization of
the calculation in (Price-Whelan & Bonaca 2018) that
quantified the fraction of stars in the additional compo-
nents at the locations of the spur and the blob. Finally,
we define a stream membership probability, pmem, as
the joint probability of a star belonging either to the
main stream or the additional feature, evaluate these
probabilities using MCMC samples and apply them to
every star. The upper panel of Figure 1 shows stars with

pmem > 0.5, with larger and darker points representing
stars with a higher membership probability.
Most likely GD-1 members trace a thin stream, whose

width varies between � ⇡ 100 and 300. As noted by
Price-Whelan & Bonaca (2018), the stellar density along
the stream is not uniform, and there are two signifi-
cant underdensities, or gaps, located at �1 ⇡ �40� and
�1 ⇡ �20�, which we refer to as G-40 and G-20, respec-
tively. The main focus of this work are structures related
to the G-40 gap, so if not specified, the gap refers to G-
40. The additional, feature components are above the
background density in the spur region, �1 ⇡ �35�, and
the blob region, �1 ⇡ �15�, and consistent with zero
along the rest of the stream. In the following section we
present a model of GD-1 that simultaneously explains
the gap in the stream and the spur extending from the
stream.

3. MODELING THE PERTURBED GD-1 STREAM

3.1. Setup and the fiducial model

Unlike the observed GD-1, a globular cluster disrupt-
ing on the GD-1 orbit in a simple — analytic and smooth
— galaxy creates a stream that is also smooth (Price-
Whelan & Bonaca 2018). This model follows stars as
they leave the progenitor, and accounts for their epicylic
motion relative to the progenitor’s orbit (Küpper et al.
2008, 2010; Fardal et al. 2015). The resulting pattern
of over- and underdensities is much more uniform than
the observed stream, so the full extent of density varia-

Bonaca et al 2019



Known Stellar Streams of the Milky Way

https://github.com/cmateu/galstreams

23



Via Machinae
[DS, Buckley, Necib ‘23] [DS, Buckley, Necib, Tamanas ‘21]

• Streams are local overdensities in multiple features — ideal for enhanced bump hunt methods!


• Choose either proper motion coordinate as resonant feature


• Learn anomaly score (using normalizing flows) with remaining five features

6 Malhan, Ibata & Martin

Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.

the stream-like structures recovered by the algorithm are not
associated with the extinction correction. In Figures 7 and
8, we present our summary plots made by combining the dis-
tance and metallicity samples for the north and south hemi-
spheres, respectively. The top panels of these diagrams show
the estimate of the distances of these structures (provided
by the algorithm), while the bottom panels show an esti-
mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
distance estimates. Many structures are beautifully resolved
in this multi-parameter space.

Our aim in this contribution is not to present a thorough
or complete census of halo streams (since it would require

considerable more processing time to examine the necessary
parameter space), but rather to present a preview of the
large-scale stream structure of our Galaxy. Nevertheless, we
have selected by hand a small number of structures that
appear clearly in our maps, with kinematic properties that
distinguish them from the contaminating Galactic popula-
tion, and that are clearly not artefacts produced by Gaia’s
scanning law. A large number of other stream candidates
have a clearly-defined stream-like morphology, but possess
proper motions distributions that are similar to that of the
halo, and we deem that they require further follow-up to be
confident of their nature.

The locations of the five structures we selected are
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Angular position on the sky Velocity on the sky (proper motion) Photometry

https://arxiv.org/abs/2303.01529
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Figure 3. Upper row: Angular position in (q, _) coordinates (left), proper motion in (`⇤

q , `_) coordinates (center), and photometry (right) of all stars in the
patch centered on (U, X) = (148.6�, 24.2�) . (Note the streaking in angular position due to non-uniform coverage in Gaia DR2.) Bottom row: As above, with
stars identified by PWB18 as likely GD-1 stars shown in red, along with an example search region `_ 2 [�17, �11] mas/yr in proper motion.

Each of these choices of (U0, X0, `
min
_ ) furnishes a search region

and control region pair for the ANODE training step. Overlapping
the SRs in this way allows us to fully capture potential streams in at
least one `_ window when performing a blind search – if the SRs
were not overlapping, then a stream could easily fall at the edge of
two SRs, diluting the signal in each. By selecting SRs which are wide
enough in proper motion to fully contain a kinematically cold stream
and overlapping them by shifts which are smaller than the proper
motion width of a typical stream, we minimize the possibility of this
dilution.

SRs with fewer than 20k stars or more than 1M stars (before the
fiducial cuts) are rejected for ANODE training. The former require-
ment is because too few stars in the SR results in poor density estima-
tion performance, and the latter requirement is to avoid overly-long
training times. In addition, SRs that contained a GC candidate (iden-
tified using a simple algorithm described in App. B) were cut from
the analysis, as the presence of the GC would completely overwhelm
the training (i.e. in an SR containing a GC, the GC would correspond
to such a large, delta-function-like overdensity, that ANODE would
be unable to identify any other overdensity in the SR, such as one
coming from a stream). In the end, we are left with a total of 545 SRs
across the 21 patches of the sky containing GD-1.

To provide an example of an SR, we turn to our sam-
ple GD-1 patch defined in the previous section, centered on
(U0, X0) = (148.6�, 24.2�). We select the SR defined by `_ 2

[�17,�11] mas/yr, which encompasses the majority of the GD-1
stars contained within this patch. This SR is shown in Fig. 3 and

contains 34,823 stars in total, of which 252 are tagged by PWB18 as
possible GD-1 members.

3.2 ANODE: Density estimation

Having defined the search regions, we turn to the probability density
estimation step of the ANODE algorithm. As discussed in Sec. 2,
the stars in our dataset are characterized by two position coordinates,
two proper motion coordinates, color, and magnitude. Having set
aside one of the proper motion coordinates `_ to define the search
regions with, the remaining features (q, _, `⇤q , 1 � A, 6) we will refer
to collectively as ÆG.

Suppose the stars in a patch consist of “signal stars" coming
from a cold stellar stream, and “background stars" coming from
the stellar halo. Let the conditional probability density of the back-
ground stars be %bg (ÆG |`_), and the conditional density for the
data (consisting of background stars plus signal stream stars) be
%data (ÆG |`_) = (1�U)%bg (ÆG |`_) +U%sig (ÆG |`_) where U is a measure
of the signal strength. Then the optimal test statistic for distinguishing

MNRAS 000, 1–16 (2021)
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Figure 4. Left: ' distribution for the SR `_ = [�17, �11] mas/yr in the patch centered at (U, X) = (148.6�, 24.2�) . Stars identified as likely members of GD-1
by PWB18 are shown in red, while the “background" stars (those not tagged as likely GD-1 members by PWB18) are in blue. Right: Significance Improvement
Characteristic (SIC) curve for the same SR, showing the signal e�ciency n( and the significance improvement (signal e�ciency over square root of background
e�ciency, n(/

p
n⌫) as the cut on ' is varied. The vertical lines in both plots designate the ' value that maximizes the SIC curve.
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Figure 5. Upper row: Angular position in (q, _) coordinates (left), proper motion in (`⇤

q , `_) coordinates (center), and photometry (right) of all stars (blue)
in the `_ 2 [�17, �11] mas/yr SR of our example patch centered on (U, X) = (148.6�, 24.2�) . Bottom row: As the upper row, applying the ' > 'cut cut on
the stars in the SR (purple). The GD-1 stream becomes immediately apparent. See text for details.

are anomalous compared to the interpolation into the SR of the CR
density estimate. Stars with proper motion near zero are predomi-
nantly distant stars; this population is not well-represented in a CR
that does not contain (`⇤q , `_) ⇠ (0, 0) mas/yr. An example can be
seen in Fig. 6. If the SR contains this zero point, the distant stars
are (correctly) identified as anomalous relative to the population in
the control regions, but their sheer number completely overwhelms

any other signal in the SR, requiring their removal after training is
complete.

• Cold stellar streams, produced by tidally stripped globular clus-
ters or dwarf galaxies, are predominantly composed of old, low metal-
licity stars. Many existing stream-finding algorithms leverage this by
fitting stars in the stream candidate to isochrones appropriate to this
assumption (see e.g. Malhan & Ibata (2018)). Although the ANODE

MNRAS 000, 1–16 (2021)

All stars in a patch of the sky 
containing (part of) GD-1


(ra,dec)=(148.6,24.2)

Stars in SR after cut on  
obtained from ANODE

R(x)

Core method — illustrated with GD-1 Stream 
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The method works! 

[DS, Buckley, Necib, Tamanas ’21]

Fully data driven, simulation independent!

https://arxiv.org/abs/2104.12789


New stream candidates from Gaia DR2

26

[DS, Buckley, Necib 2303.01529]

Applied to Gaia DR2: many (~ 80-90) new streams potentially discovered!

(Follow-up studies ongoing to confirm)

https://arxiv.org/abs/2303.01529


Direct phase space density estimation of stellar tracers from Gaia

• We realized that training normalizing flows on the Gaia dataset could have other 
interesting applications


• The full 6D phase space density  of all the stars in the Galaxy (or at least all 
the nearby ones) carries a wealth of information about Galactic dynamics.


• In particular, we can directly infer the mass density  of the Galaxy from 
knowledge of , and from that the mass density  of the dark matter.

p( ⃗x, ⃗v)

ρ( ⃗x)
p( ⃗x, ⃗v) ρDM( ⃗x)
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Buckley, Lim, Putney & DS 2205.01129, 2305.13358

Green et al 2011.04673, 2205.02244, Naik et al 2112.07657, An et al 2106.05981

https://arxiv.org/abs/2205.01129
https://arxiv.org/abs/2305.13358


Local dark matter density
Knowing the local dark matter density  is very important for many reasons:ρDM(x)

28

Assumes ρDM = 0.3 GeV/cm3

from 2104.07634

from 1812.00044

from 2001.05503

Could potentially resolve the 
presence of dark matter substructure

Input to direct detection 
experiments

Make contact with models (NFW, Einasto, etc) 
and simulations, learn more about Galaxy 

formation and nature of dark matter




• Liouville theorem: phase space density is conserved


• Stars are well-approximated as collisionless, only interacting through long-
ranged gravitational force


• So they must obey the collisionless Boltzmann equation:

29

[ ∂
∂t

+ ⃗v ⋅
∂
∂ ⃗x

+ ⃗a( ⃗x) ⋅
∂
∂ ⃗v ] p( ⃗x, ⃗v; t) = 0

⃗a( ⃗x) = − ∇Φ( ⃗x)

:  gravitational potential of the Galaxy (DM+stars+gas…)Φ( ⃗x)

Idea: mass density from phase space density

Accelerations:

Buckley, Lim, Putney & DS 2205.01129, 2305.13358

Green et al 2011.04673, 2205.02244, Naik et al 2112.07657, An et al 2106.05981

Dynamical equilibrium  
(expected to be approximately valid)

https://arxiv.org/abs/2205.01129
https://arxiv.org/abs/2305.13358


• Just from knowledge of  and its derivatives we can determine the 
accelerations 


• Taking another derivative gives us the mass density of the Galaxy!

p( ⃗x, ⃗v)
⃗a = − ∇Φ
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4πGρ = ∇2Φ = ∇ ⋅ ⃗a

[ ⃗v ⋅
∂
∂ ⃗x

+ ⃗a( ⃗x) ⋅
∂
∂ ⃗v ] p( ⃗x, ⃗v) = 0

Idea: mass density from phase space density
Buckley, Lim, Putney & DS 2205.01129, 2305.13358

Green et al 2011.04673, 2205.02244, Naik et al 2112.07657, An et al 2106.05981

https://arxiv.org/abs/2205.01129
https://arxiv.org/abs/2305.13358


Comparison with previous approaches

• Existing measurements typically use Jean’s equation 
(second moment of Boltzmann equation) or rotation curves 

• They make many assumptions (axisymmetry, reflection 
symmetry, simple parametric models…) and bin the data 

• Results can seem precise but might not be accurate 
(biased)
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Figure 1: Summary of recent ⇢DM,� estimates. The marker type indicates the main observa-
tion of the analyses: triangles for local observations, squares for circular velocities, a diamond
for disc stars in an extended local region, and circles for halo stars. From top to bottom:
the brown triangles correspond to the local studies presented in section 4.1.1; the dark blue
squares to the circular velocity analyses from section 4.2; the red triangles to the Galactic
mass models based on local observations, discussed in section 4.3.1; the pink diamond to the
Jeans anisotropic modelling of disc stars presented in section 4.3.2; the cyan squares to the
circular-velocity-based Galactic mass models included in section 4.3.3; and the green circles
to the analyses of halo stars from section 4.3.4. We do not include the very local analyses
from section 4.1.2 because of their large error bars.

estimates of vc(R) within R ⇠ 5–25 kpc are currently available [47]. However, without a corre-
spondingly precise knowledge of how baryons are distributed, it is not possible to disentangle
the contribution to vc(R) from baryons and dark matter. Therefore, the uncertainty of the
resulting ⇢DM,� is dominated by the uncertainties in the baryonic distribution (e.g., [82]).

The results of recent global mass models (section 4.3) are also included in figure 1. Some
studies focused on fitting the distribution function of disc stars—section 4.3.1 and estimates
in figure 1 shown in red with triangular markers—complementing their analyses with other

– 22 –

From de Salas & Widmark 2012.11477

Our approach using normalizing flows is model-free, does not 
assume symmetries, and is unbinned

First ever fully 3d measurement of dark matter density 
in the solar neighborhood

https://arxiv.org/abs/2012.11477


Results: mass density

Result is consistent with nonzero, 
spherically symmetric DM density!

• Gaia measurement error
Error bars include:

• MAF training variance • Finite training statistics

Lim, Putney, Buckley & DS 2305.13358




Results: mass density

Excellent agreement with 
previous measurements, 

with hopefully more 
realistic error bars

Our result:  
   ρDM(r⊙) = 0.47 ± 0.05 GeV/cm3

Lim, Putney, Buckley & DS 2305.13358
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Results: mass density
Lim, Putney, Buckley & DS 2305.13358


Radial profile broadly consistent with recent NFW fits



Summary/Outlook

• Modern machine learning is a powerful new tool revolutionizing fundamental 
physics with Big Data. 


• There has been an explosion of new methods and proofs-of-concept. 


• Many new methods are beginning to be applied to real data in the HEP and 
Astro/Cosmo domains.


• These are exciting times! New discoveries await!

35



Thanks for your attention!
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Backup
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Example: Classifying Anomalies THrough Outer Density Estimation (CATHODE)

38

DS+ Hallin et al 2109.00546, 2210.14924

2

m

a.u.

SB SR SB

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

x

pdata(x|m 2 SR)

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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1. Train generative model (eg normalizing flow) on 

sidebands to learn background model


2. Sample from this model for  to obtain 
synthetic background events in the signal region.


3. Train binary classifier on data vs synthetic 
background to learn

m ∈ SR
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these were the parameters used by the density estimator).
Before the mock data and sampled events are passed on
to the classifier, the features are re-standardized, this
time using the mean and standard deviation of the SR
data features. Here, a logit transformation is not used
as it has consistently resulted in sub-optimal anomaly
detection performance.

The resulting distributions of the sampled events and
the mock data background in the validation dataset are
shown in Fig. 4. One can see that there is a notable over-
lap between the two distributions in all auxiliary features,
as well as on the mJJ distribution drawn from the KDE
fit.

FIG. 4. Normalized distributions of the features of the actual
background and of the synthetic samples.

C. Classifier

The third step of the Cathode method is to train
a classifier to distinguish the generated sample events
(that should follow the background distribution in the
SR) from the mock data (that follow the background plus
signal distribution in the SR). For all the variations we
will explore (including CWoLa Hunting), we will use the
same classifier architecture. This consists of 3 hidden

layers with 64 nodes each and a binary cross-entropy loss.

The binary classifier, also implemented with Py-
Torch [93], is trained for 100 epochs, using the Adam [94]
optimizer with a learning rate of 10�3. When the classes
are imbalanced (as will be the case when we oversam-
ple the background model), they are reweighted in the
loss computation accordingly, such that they contribute
equally. Note that here classes refer to the sampled
events and the mock data, not signal and background
events.

For this step, we divide the mock data in the SR in half,
reserving 60,000 events for training the classifier and the
remaining 60,000 events for validation (model selection).
In a real-life application one would want to perform k-
fold cross validation so as to not throw away half of the
events. However, as this is a proof of concept we do not
employ this here.

Unless stated otherwise, we sample in total 400,000
events from the MAF generative model (so N = 40, 000
in the description of Section III B), which are distributed
equally (200,000 each) into the training and validation set
for the classifier. Di↵erent choices will then be compared
in Section IVD.

During training, the loss is recorded on the validation
set, as shown in Fig. 5. The model states of the 10 epochs
with the lowest validation losses are used to construct an
ensemble prediction. As in the density estimator ensem-
ble, these epochs do not need to be consecutive. In the
ensembling, the individual predictions of each data point
are averaged. Since the loss is defined with respect to
labels indicating whether a data point is from mock data
or sampled events, this approach does not rely on any
truth information pertaining to the anomaly.

FIG. 5. Training and validation loss of the classifier (dotted
lines) and the 5 epoch moving average (solid lines) during
training. The accuracy is also shown, which in the case of
low signal contamination should oscillate around 0.5 if the
two classes are indistinguishable.
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pdata(x |m ∈ SB) = pbg(x |m ∈ SB)

R(x) =
pdata(x)
pbg(x)

https://arxiv.org/abs/2109.00546


From proof-of-concept to real data

• After validating our method with a realistic 
hydrodynamical cosmological simulation, we 
applied it to Gaia DR3.


• Selected stars in Gaia DR3 within 4 kpc with 


• full 6d features


• brightness cut to ensure completeness


• dominated by “red clump” stars which are 
supposed to be a good equilibrium tracer 
population => 5.8M stars 
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“red clump”

Buckley, Lim, Putney & DS 2205.01129, 2305.13358


https://arxiv.org/abs/2205.01129
https://arxiv.org/abs/2305.13358


Results: density estimation
Lim, Putney, Buckley & DS 2305.13358




Results: accelerations

Symmetries to ~10% level:

• north-south

• azimuthal (phi)

=> Expected from 
dynamical equilibrium

Lim, Putney, Buckley & DS 2305.13358




More on determining the accelerations

• How can we solve for 3 acceleration functions  with just a single equation?


•  doesn’t depend on velocity! So this is actually an infinite number of equations for , 
one for each choice of 


• We choose to perform least-squares minimization over a sample of velocities to determine 
best-fit  

⃗a( ⃗x)

⃗a( ⃗x) ⃗a( ⃗x)
⃗v

⃗a( ⃗x)
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L( ⃗a( ⃗x)) =
1
N

N

∑
α=1 ([ ⃗vα ⋅

∂
∂ ⃗x

+ ⃗a( ⃗x) ⋅
∂
∂ ⃗v ] p( ⃗x, ⃗vα))

2

[ ⃗v ⋅
∂
∂ ⃗x

+ ⃗a( ⃗x) ⋅
∂
∂ ⃗v ] p( ⃗x, ⃗v) = 0

Buckley, Lim, Putney & DS 2205.01129, 2305.13358

Green et al 2011.04673, 2205.02244, Naik et al 2112.07657, An et al 2106.05981

https://arxiv.org/abs/2205.01129
https://arxiv.org/abs/2305.13358


Proof-of-concept

• Training data: state-of-the-art Nbody+hydro galaxy simulation from “Nbody shop” 
collaboration  
[https://b2share.eudat.eu/records/c9f232d8ac804785aad35004177a704e]


• Milky Way like Galaxy h277

43

11 / 27 

Training Dataset:
h277 at present

12 / 27 

Training Dataset
- number of stars  
   153,174  (<< size of Gaia 6D dataset) 
- observer’s location 
    [8.122, 0., 0.0208] kpc
- observing radius = 3.5 kpc
- simulation resolution: 0.173 kpc
- Using only kinematic information:
    position and velocity

Our work: first to use Nbody+hydro simulation

Buckley, Lim, Putney & DS 2205.01129


star particles

https://b2share.eudat.eu/records/c9f232d8ac804785aad35004177a704e
https://arxiv.org/abs/2205.01129


Results: density estimation
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FIG. 4: One-dimensional density distributions in galactocentric Cartesian coordinates of 106 stars sampled from 10 MAFs
trained on datasets of stars within within 3.5 kpc of the Solar position ~x� = (8.122, 0.0, 0.0208) kpc. Sampled stars from
MAFs trained on the original dataset before errors are applied are shown in blue, and after error smearing in red, while the
original (unsmeared) dataset is shown in black. Shaded regions indicate the 1� error from the ensemble of 10 MAFs. Vertical
dashed lines show the Solar velocity. The subplots show the di↵erence in in the one-dimensional histogram between the sampled
stars and the original distribution of the data without errors: �f ⌘ fMAF � ftrue (where ftrue is obtained via one-dimensional
binning). The grey ellipse corresponds to expected 1� Gaussian errors based on the number of original dataset stars in each
bin, and the colored shading indicates 1� errors from the ensemble of 10 MAFs.

tioned on location are an order of magnitude larger than
those for the entire dataset, reflecting the fact that the
fewer tracers are available to constrain the velocity dis-
tribution when conditioning on position, versus sampling
the velocity distribution over the entire observation win-
dow.

IV. ACCELERATION FROM THE
BOLTZMANN EQUATION

Having introduced the simulated dataset and our
method of learning the density and derivatives of that
dataset, we can now turn to determining the accelera-
tion and overall density in which these tracer stars were
evolving. Our initial goal is to determine the poten-
tial gradient at any position ~x which lies within the do-
main of our tracer dataset, starting with the Boltzmann

Equation in Cartesian coordinates Eq. (1). As pointed
out in Ref. [60–62], as � is a function of ~x only, multi-
ple velocities sampled from p(~v|~x) at the same ~x must
obey the Boltzmann Equation given the same accelera-
tion ~a ⌘ �@�/@~x.

As the MAFs do not perfectly reconstruct the phase
space densities and local equilibrium is not perfectly
achieved, we expect the time derivative of the phase-
space density df/dt to di↵er from zero, star-by-star.
However, under the assumptions of approximate equilib-
rium and that the MAFs are approximately correct, this
time derivative will be on average zero. We can then ob-
tain an estimator for the the acceleration at a location ~x

Buckley, Lim, Putney & DS 2205.01129
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Results: accelerations
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Accelerations to within 5% accuracy!

We estimated uncertainties from:

• random training initialization

• finite training data statistics (bootstrap)

• measurement error

Buckley, Lim, Putney & DS 2205.01129
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Results: mass density
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Mass density to within 10-20% accuracy!

Buckley, Lim, Putney & DS 2205.01129


We estimated uncertainties from:

• random training initialization

• finite training data statistics (bootstrap)

• measurement error
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The Galaxy is a dusty place
Lim, Putney, Buckley & DS 2305.13358




The Galaxy is a dusty place

• In this first work we did not attempt to correct for dust extinction (this is work 
in progress).


• Rather we explored our results along 1d slices that should avoid the worst of 
the dust effects.

Lim, Putney, Buckley & DS 2305.13358



