
Optimal Transport for Transfer Learning and
Algorithmic Fairness Problems Arising in

High-Energy Physics

Mikael Kuusela
Department of Statistics and Data Science,

Carnegie Mellon University

Institute of Advanced Study,
University of Geneva,
Geneva, Switzerland

October 4, 2023

Joint work with: Tudor Manole, Patrick Bryant, John Alison,

Purvasha Chakravarti and Larry Wasserman

Special thanks to Larry for contributing some of the following materials!

Mikael Kuusela (CMU) October 4, 2023 1 / 41



Hypothesis testing for discovery of new physics

Search for new phenomena at the LHC usually boils down to testing for
the presence of a signal distribution over a background of known physics:

• Known physics: pb(x)

• New signal: ps(x)

• Nature: q(x) = (1− λ)pb(x) + λps(x)

Want to test H0 : λ = 0 vs. H1 : λ > 0

If we reject H0 at high enough significance level, then we could proceed to
claim discovery of new physics
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Classifier-based tests

Over the past 20 years or so, the high-energy physics community has
developed an impressive statistical machinery for performing these tests

Relevant datasets:

Training background: X = {X1, . . . ,Xmb
}, Xi ∼ pb

Training signal: Y = {Y1, . . . ,Yms}, Yi ∼ ps

Experimental data: W = {W1, . . . ,Wn}, Wi ∼ q = (1− λ)pb + λps

Basic idea:

1 Train a supervised classifier to separate X from Y
2 Use the classifier output to test for the presence of signal in W
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Classifier output

Several options for the test:

• Counting experiment in
the highest purity output
bin

• Cut on the classifier
output; test using the
resulting signal-enriched
sample

• LRT: Use the connection
of the classifier output to
the likelihood ratio

• ...
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Problem 1: Data-Driven Di-Higgs Background Modeling

Two similar distributions P3b and P4b over a 16-dimensional space

Sample space X = C
⋃
S , C = control region, S = signal region, C ∩S = ∅

Given: a sample X1, . . . ,Xn ∼ P3b and a sample Y1, . . . ,Ym ∼ P4b(·|C )

Goal: estimate P4b(·|S)

The problem is ill-posed; we will have to make (reasonable) assumptions.
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Control and Signal Regions
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Control and Signal Regions, 3b vs. 4b

This is a transfer learning problem either in the vertical
or in the horizontal direction

Mikael Kuusela (CMU) October 4, 2023 7 / 41



Problem 2: Decorrelating signal vs. background classifiers

Distribution of Mass Distribution of Mass after Cut

Mass is a protected variable
→ This is an example of an algorithmic fairness problem
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Introduction: What is Optimal Transport?

We have two probability distributions P0 and P1.

Goal: Define an “optimal map” that transforms P0 into P1.

This enables us to:

• Define a distance based on transport (Wasserstein distance)

• Define a path (geodesic) between P0 and P1 in the space of
distributions (morphing)

• Define a shape-preserving notion of “averages” of distributions
(barycenter)
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Optimal Transport (Monge 1781)
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Optimal Transport (Monge Version)

Let X ∼ P0.

Find T to minimize

E
[
||X − T (X )||p

]
=

∫
||x − T (x)||pdP0(x)

over all maps T such that T (X ) ∼ P1.

Can replace the Euclidean distance ‖ · ‖ with any valid distance metric.

For now, assume that the minimizer exists. Then the minimizer T ∗ is
called the optimal transport map from P0 to P1.

Common choices: p = 2 or p = 1.
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Wasserstein distance

The pth Wasserstein distance between P0 and P1 is defined as:

Wp(P0,P1) =
(∫
||x − T ∗(x)||pdP0(x)

)1/p

where T ∗ is the optimal transport map.

Defines a metric on the space of (nearly) all distributions.

W1 is called the Earth Mover’s Distance
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Geodesics (Morphing)

• The set of distributions P equipped with Wasserstein distance Wp is
a geodesic space (and is Riemannian when p = 2).

• Given P0 and P1, there is a shortest path (geodesic) between them.

• For 0 ≤ s ≤ 1, let Ps be the distribution of the random variable
(1− s)X + sT (X ) where X ∼ P0.

• Then (Ps : 0 ≤ s ≤ 1) is the desired geodesic.
Length of the path = Wp(P0,P1).
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Euclidean Path between Two Gaussians
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Geodesic Path between Two Gaussians
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Geodesic Path between Two Mixtures

Image credit: Bonneel, Peyre and Cuturi (2016)
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Geodesic Path Between Two Images

Image credit: Bauer, Joshi and Modin (2015)

Mikael Kuusela (CMU) October 4, 2023 17 / 41



Barycenters

Given P1, . . . ,PN , what is the “average” of the Pj ’s?

Euclidean average?

1

N

∑
j

Pj

Same problem as before: this does not necessarily look like any of the Pj ’s.

Wasserstein barycenter: find P to minimize∑
j

W 2
2 (P,Pj).

This is the barycenter and it is shape preserving.

Weighted version of this gives us the ability to morph between multiple
distributions.
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Example from Peyre and Cuturi (2019)
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Optimal Transport (Kantorovich Version)

An important detail that we have ignored so far:

There may not be a map that takes P to Q.

For example, if P = δ0 (point mass at 0) and Q = Gaussian.

Solution: Kantoravich relaxation

Take mass at x , and split it into many small pieces.
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Optimal Transport (Kantorovich Version)

Let J denote all joint distributions J for (X ,Y ) with marginals P and Q.
Each J is called a coupling between P and Q.

Find J (optimal transport plan / optimal coupling) to minimize

EJ [||X − Y ||p] =

∫
||x − y ||p dJ(x , y)

Again, this defines a distance

Wp(P,Q) =

(
inf
J

∫
||x − y ||pdJ(x , y)

)1/p

called the Wasserstein distance, as before.

Mikael Kuusela (CMU) October 4, 2023 23 / 41



Joint distribution J with a given X marginal and a given Y marginal.
Image credit: Wikipedia.
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Control and Signal Regions, 3b vs. 4b

This is a transfer learning problem either in the vertical
or in the horizontal direction
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Three Methods

1. Density ratio
Estimate p3b(x)

p4b(x) over C using a classifier
and apply out-of-sample in S .

2. Optimal transport
Use P3b to find a map T that optimally
transports mass from C to S . Apply the
map to P4b using a nearest-neighbor
look-up in C.

3. Combination
Use the classifier to reweight P3b to
look like P4b in C . Then apply T to the
weighted sample to transport C to S .

EMD used as the ground metric when
computing T (double optimal transport)

P3C

P4C

P3S

P4S

HH-OT
HH-FvT
HH-Comb

OT Map

Density Ratio

In-sample

Out-of-sample
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Energy Mover’s Distance (EMD)

Proposed by Komiske, Metodiev and Thaler (2019).

A jet is described by (pT , η, φ,m), where pT = transverse momentum,
η = pseudorapidity, φ = azimuthal angle and m = mass.

In our case, an event E contains 4 jets. We treat it as a measure:

E =
4∑

i=1

pT ,iδi ,

where δi is a point mass at (ηi , φi ,mi ).

The Energy Mover’s Distance (EMD) between two events E1 and E2 is
defined as the (modified) Wasserstein distance between these two
measures.
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Energy Mover’s Distance (EMD)
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Results: mHH
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Results: Signal-versus-background classifier output
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Results: Classifier AUCs

OT-20NN OT-10NN OT-1NN OT-FvT FvT
0.51
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A
U

C

Figure: AUCs for a classifier trained to separate the background models from the
actual 4b background sample. For 3b-tagged data, we obtain AUC 0.5843, with
variability interval [0.5812,0.5874].

For more information, see: T. Manole, P. Bryant, J. Alison, M. Kuusela, and

L. Wasserman. Background Modeling for Double Higgs Boson Production: Density

Ratios and Optimal Transport. arXiv:2208.02807, 2022.
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Optimal transport for decorrelation

Setting: features X , protected variable m(X ) (e.g., invariant mass) on the
background data

Problem: classifier h trained to separate signal from background based on
X will not preserve the distribution of m(X )

Idea: train h as usual, then apply optimal transport to map h(X ) so that
T (h(X )) is independent of m(X ) on the background data
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Optimal transport for decorrelation

• Objective: minT (T (h(X ))− h(X ))2 subject to T (h(X )) independent
of M = m(X ), given X ∼ pb (i.e., T (h) ⊥⊥ M|X ∼ pb)

• That is, we want

P(T (h(X )) ≤ t|M,X ∼ pb) = P(T (h(X )) ≤ t|X ∼ pb)

(i.e., T (h)|M d
= T (h)|X ∼ pb)

• Additionally, we want

P(T (h(X )) ≤ t|X ∼ pb) = P(h(X ) ≤ t|X ∼ pb)

(i.e., T (h)
d
= h|X ∼ pb)

arg min
T

(T (h(X ))− h(X ))2 s.t. T (h)|M d
= h|X ∼ pb
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Optimal transport for decorrelation

arg min
T

(T (h(X ))− h(X ))2 s.t. T (h)|M d
= h|X ∼ pb

Solution: the conditional optimal transport map Ta from
p(h(X )|M = a,X ∼ pb) to the marginal p(h(X )|X ∼ pb).
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Optimal transport for decorrelation

h(X ) is univariate so there exists a closed form solution to optimal
transport problem:

Ta(h(X )) = G−1(Fh|M(h(X )|M = a)),

where G is the marginal cdf of h(X ) and Fh|M is the conditional
distribution of h(X ) given m(X ) = a and X is from the background
distribution

Solution is found by estimating G and Fh|M

We call this CDOT (Classifier Decorrelated through Optimal Transport)
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Sculpting problem solved!

Distribution of Mass Distribution of Mass after Cut
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Sculpting problem solved!

Distribution of Mass Distribution of Mass after Cut
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Optimal transport for decorrelation
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Optimal transport for decorrelation
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WTagging dataset: comparison

CDOT achieves superior
signal-to-background ratio
for strongly decorrelated
classifiers.

Original figure without CDOT taken from the

MoDe [Kitouni et al. (2010.09745)] paper.
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Conclusions

• Optimal transport provides an appealing tool for morphing between
distributions, measuring the distance between distributions and
computing averages of distributions

• Well-established mathematical theory; surge of interest in statistics /
data science / machine learning in recent years; increasing interest in
HEP as well

• We have found optimal transport to be a useful tool for solving
background estimation (transfer learning) and decorrelation
(algorithmic fairness) problems in HEP

• Many other possible applications of optimal transport in HEP and
beyond
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Backup
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Results: Classifier weights vs. OT weights
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WTagging dataset: before OT transformation
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WTagging dataset: after OT transformation
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WTagging dataset: after OT transformation
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Finding the Transport Map: One-Dimensional Case

• Find the cdf (cumulative distribution function)

• F0(s) = P0(X ≤ s)

• F1(s) = P1(Y ≤ s)

• The optimal map is: T (s) = F−1
1

(
F0(s)

)
• Wp(P0,P1) =

(∫
|F−1

0 (s)− F−1
1 (s)|pds

)1/p

• The morphing — geodesic linking F0 and F1 — is

Fs =
[
(1− s)F−1

0 + sF−1
1

]−1
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Data Version

X1, . . . ,Xn ∼ P0

Y1, . . . ,Ym ∼ P1

Just substitute the estimated (empirical) cdf’s:

F̂0(s) =
1

n

n∑
i=1

I (Xi ≤ s)

F̂1(s) =
1

m

m∑
i=1

I (Yi ≤ s)
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Finding the Transport Map: Gaussian Case

If X ∼ N(µ0,Σ0), Y ∼ N(µ1,Σ1)

Then:

T (x) = µ1 + Σ
−1/2
0 (Σ

1/2
0 Σ1Σ

1/2
0 )1/2Σ

−1/2
0 (x − µ0)

W 2
2 (P0,P1) = ||µ0 − µ1||2 + B(Σ0,Σ1)2

where

B(Σ0,Σ1) = trace(Σ0) + trace(Σ1)− 2trace
[
(Σ

1/2
0 Σ1Σ

1/2
0 )1/2

]
.
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Finding the Transport Map: Two Point Clouds

• X = {X1, . . . ,Xn}, Xi ∈ Rd

• Y = {Y1, . . . ,Yn}, Yi ∈ Rd

• T : Xi → Yπ(i), where the permutation π minimizes∑
i

||Xi − Yπ(i)||2

over all permutations π.

• Hungarian algorithm: O(n3) computing time
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OT in HEP: Horizontal Morphing

This is the Wasserstein geodesic between 1D distributions!
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Density Ratios and Classifiers

In general, given two densities p and q and samples

X1, . . . ,Xn ∼ p

Y1, . . . ,Yn ∼ q

Give labels:
X1 . . . Xn Y1 . . . Yn

Z 1 . . . 1 0 . . . 0

Classifier ψ:

ψ(u) = P(Z = 1|u) =
p

p + q

and so
p

q
=

ψ

1− ψ
.
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