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Hypothesis testing for discovery of new physics

Search for new phenomena at the LHC usually boils down to testing for
the presence of a signal distribution over a background of known physics:

e Known physics: pp(x)
e New signal: ps(x)
e Nature: g(x) = (1 — A)pp(x) + Aps(x)

Wanttotest Hp: A=0vs. H;: A >0

If we reject Hy at high enough significance level, then we could proceed to
claim discovery of new physics
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Classifier-based tests

Over the past 20 years or so, the high-energy physics community has
developed an impressive statistical machinery for performing these tests

Relevant datasets:

Training background: X = {Xi,...,Xn,}, Xi ~ pp
Training signal: Y ={Y1,..., Yn.}, Y; ~ ps
Experimental data: W = {W4,..., W,}, Wi~ q=(1-A)pp+ Aps

Basic idea:

@ Train a supervised classifier to separate X’ from Y
@ Use the classifier output to test for the presence of signal in W
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Classifier output
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Several options for the test:

e Counting experiment in
the highest purity output
bin

e Cut on the classifier
output; test using the
resulting signal-enriched
sample

e LRT: Use the connection
of the classifier output to
the likelihood ratio
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Problem 1: Data-Driven Di-Higgs Background Modeling

Two similar distributions P3p, and P4 over a 16-dimensional space
Sample space X = C|J S, C = control region, S = signal region, CNS
Given: a sample Xi,..., X, ~ P3p and a sample Yi,..., Yy ~ Pyp(-|C)
Goal: estimate Pyp(+|S)

The problem is ill-posed; we will have to make (reasonable) assumptions

b
4b-Tagged 3b-Tagged b
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ol and Signal Regions
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Control and Signal Regions, 3b vs. 4b

Control Signal

: 2

b,

4b

This is a transfer learning problem either in the vertical
or in the horizontal direction
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Problem 2: Decorrelating signal vs. background classifiers
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Mass is a protected variable
— This is an example of an algorithmic fairness problem
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Introduction: What is Optimal Transport?

We have two probability distributions Py and P;.
Goal: Define an “optimal map” that transforms Py into P;.

This enables us to:
e Define a distance based on transport (Wasserstein distance)

e Define a path (geodesic) between Py and Pj in the space of
distributions (morphing)

e Define a shape-preserving notion of “averages” of distributions
(barycenter)
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Optimal Transport (Monge 1781)

/ \\\
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Optimal Transport (Monge Version)

Let X ~ Py.

Find T to minimize
[1x - TO0IP] = [ I = T0lPdPo()

over all maps T such that T(X) ~ Py.

Can replace the Euclidean distance || - || with any valid distance metric.

For now, assume that the minimizer exists. Then the minimizer T* is
called the optimal transport map from Py to P;.

Common choices: p=2or p=1.
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Wasserstein distance

The pth Wasserstein distance between Py and P is defined as:

Wo(Pa. Py) = ([ 1= T (1 Papo(x))

where T* is the optimal transport map.
Defines a metric on the space of (nearly) all distributions.

W; is called the Earth Mover's Distance
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Geodesics (Morphing)

The set of distributions P equipped with Wasserstein distance W, is
a geodesic space (and is Riemannian when p = 2).

Given Py and Py, there is a shortest path (geodesic) between them.

e For 0 <s <1, let Ps be the distribution of the random variable
(1 —5)X +sT(X) where X ~ Py.

Then (Ps : 0 < s <1) is the desired geodesic.
Length of the path = W,(Pg, P1).
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Euclidean Path between Two Gaussians
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Geodesic Path between Two Gaussians
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Geodesic Path between Two Mixtures

{4 interpolation Wasserstein interpolation

Image credit: Bonneel, Peyre and Cuturi (2016)
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Geodesic Path Between Two Images

Image credit: Bauer, Joshi and Modin (2015)
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Given P, ..., Py, what is the “average” of the P;'s?

Euclidean average?

Same problem as before: this does not necessarily look like any of the P;'s.

Wasserstein barycenter: find P to minimize
> WP, P)).
J

This is the barycenter and it is shape preserving.

Weighted version of this gives us the ability to morph between multiple
distributions.
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Example from Peyre and Cuturi (2019)
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Optimal Transport (Kantorovich Version)

An important detail that we have ignored so far:
There may not be a map that takes P to Q.

For example, if P = dp (point mass at 0) and Q@ = Gaussian.

Solution: Kantoravich relaxation

Take mass at x, and split it into many small pieces.
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Optimal Transport (Kantorovich Version)

Let J denote all joint distributions J for (X, Y) with marginals P and Q.
Each J is called a coupling between P and Q.

Find J (optimal transport plan / optimal coupling) to minimize

E,flIX — YH”]Z/HX—yH” dJ(x;y)

Again, this defines a distance

WP, Q) = (inf [ I1x = yllPastx, y>)1/p

called the Wasserstein distance, as before.
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Joint distribution J with a given X marginal and a given Y marginal.
Image credit: Wikipedia.
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Control and Signal Regions, 3b vs. 4b

Control Signal

: 2

b,

4b

This is a transfer learning problem either in the vertical
or in the horizontal direction
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Three Methods

1. Density ratio
Estimate ”i"—(x) over C using a classifier

(x)

and apply out-of-sample in S. p3c p3s

Y

2. Optimal transport

Use P3p to find a map T that optimally A

transports mass from C to S. Apply the A | A

map to Pyp using a nearest-neighbor |

look-up in C. pAc | p4s
Y|V

3. Combination

Use the classifier to reweight P3p to
look like P4p in C. Then apply T to the
weighted sample to transport C to S.

=== HH-OT

P OT Map — |n-sample

= HH-FVT -
= HH-Comb <= Density Ratio|+ = = Out-of-sample

EMD used as the ground metric when
computing T (double optimal transport)
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Energy Mover's Distance (EMD)

Proposed by Komiske, Metodiev and Thaler (2019).

A jet is described by (p1,n, ¢, m), where pr = transverse momentum,
n = pseudorapidity, ¢ = azimuthal angle and m = mass.

In our case, an event &£ contains 4 jets. We treat it as a measure:

4
E=Y" pr.id,
i=1

where 0; is a point mass at (7;, ¢i, m;).

The Energy Mover's Distance (EMD) between two events £ and &; is
defined as the (modified) Wasserstein distance between these two
measures.
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Energy Mover's Distance (EMD)
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Energy Mover's Distance (EMD)
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Results
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Results: Signal-versus-background classifier output
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Results: Classifier AUCs
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Figure: AUCs for a classifier trained to separate the background models from the
actual 4b background sample. For 3b-tagged data, we obtain AUC 0.5843, with
variability interval [0.5812,0.5874].

For more information, see: T. Manole, P. Bryant, J. Alison, M. Kuusela, and
L. Wasserman. Background Modeling for Double Higgs Boson Production: Density
Ratios and Optimal Transport. arXiv:2208.02807, 2022.
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Optimal transport for decorrelation

Setting: features X, protected variable m(X) (e.g., invariant mass) on the
background data

Problem: classifier h trained to separate signal from background based on
X will not preserve the distribution of m(X)

Idea: train h as usual, then apply optimal transport to map h(X) so that
T(h(X)) is independent of m(X) on the background data
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Optimal transport for decorrelation

e Objective: miny (T(h(X)) — h(X))? subject to T(h(X)) independent
of M = m(X), given X ~ pp, (i.e., T(h) 1L M|X ~ pp)

e That is, we want
P(T(h(X)) < tIM, X ~ py) = P(T(h(X)) < t[X ~ ps)
(i, T(h)M < T(h)|X ~ pp)
e Additionally, we want
P(T(h(X)) < t|X ~ pp) = P(h(X) < t|X ~ pp)
(ie., T(h) < hIX ~ pp)

argmin (T(h(X)) — h(X))* s.t. T(h)|M 2 AIX ~ ps
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Optimal transport for decorrelation

arg min (T (h(X)) — h(X))* s.t. T(h)|M 2 hX ~ pp

Solution: the conditional optimal transport map T, from
p(h(X)|M = a, X ~ pp) to the marginal p(h(X)|X ~ pp).

[ AT

Plhlm) pCh)
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Optimal transport for decorrelation

h(X) is univariate so there exists a closed form solution to optimal
transport problem:

To(h(X)) = 6~ (Fym(h(X)|M = a)),
where G is the marginal cdf of h(X) and Fp is the conditional
distribution of h(X) given m(X) = a and X is from the background
distribution

Solution is found by estimating G and Fpp

We call this CDOT (Classifier Decorrelated through Optimal Transport)
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Sculpting problem solved!

Distribution of Mass Distribution of Mass after Cut
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Sculpting problem solved!

Distribution of Mass after Cut
Mass|T(h) > 0.5
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Optimal transport for decorrelation

Density
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Optimal transport for decorrelation
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WTagging dataset: comparison
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Original figure without CDOT taken from the

MoDe [Kitouni et al. (2010.09745)] paper.
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https://arxiv.org/pdf/2001.05310.pdf

Conclusions

e Optimal transport provides an appealing tool for morphing between
distributions, measuring the distance between distributions and
computing averages of distributions

e Well-established mathematical theory; surge of interest in statistics /

data science / machine learning in recent years; increasing interest in
HEP as well

e We have found optimal transport to be a useful tool for solving
background estimation (transfer learning) and decorrelation
(algorithmic fairness) problems in HEP

e Many other possible applications of optimal transport in HEP and
beyond
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Backup
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Results: Classifier weights vs. OT weights
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re OT transformation

WTagging dataset: b
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WTagging dataset: after OT transformation

Density
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WTagging dataset: after OT transformation
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Finding the Transport Map: One-Dimensional Case

Find the cdf (cumulative distribution function)
Fo(s) = Po(X <s)
Fi(s) = Pi(Y <s)
The optimal map is: T(s) = F; ' (Fo(s))
Wo(Po, P1) = (f 15 (s) = Fi X(s)IPds) ™"
The morphing — geodesm linking Fo and F; — is

Fo=[1-s)Ft +sF 1]

Mikael Kuusela (CMU)
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X1,..., Xy~ Py
Y, ..., Y~ P

Just substitute the estimated (empirical) cdf’s:

Fols) = ,172 10X < s)
i=1

A(s)= > 1(Yi <)
i=1
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Finding the Transport Map: Gaussian Case

If X ~ N(,u,o,zO), Y ~ N(,u]_,zl)
Then:

T(x) = m + T V(55 2015y 2252 (x — ho)

W3 (Po, P1) = ||pto — 11| + B(Zo, £1)?

where

B(Xo, X1) = trace(Xo) + trace(X1) — 2trace [(23/22123/2)1/2].
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Finding the Transport Map: Two Point Clouds

X ={Xy,...., X}, X eR

Y={Yi,...,Y,}, YieRd

e T :X; — Yx(i), where the permutation 7 minimizes
Do IXi = YalP
i

over all permutations 7.

e Hungarian algorithm: O(n®) computing time
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OT in HEP: Horizontal Morphing

Linear interpolation of histograms

AL. Read'
University of Oslo, Department of Physics, P-0. Box 1048, Blindern, 0316 Oslo, Norway

Received 19 October 1998

Abstract

is defined for the f probability that ed to have alinear
on a parameter of the distributions. The distributions may be in the form of continuous functions or histograms. The
prescription is based on the weighted mean of the inverses of the cumulative distributions between which the
interpolation is made. The result is particulary elegant for a certain clas of disributions, including the normal and
exponential distributions, and is useful for the interpolation of Monte C: results which are

to obtain. © 1999 Elsevier Science B.V. All rights reserved.

The p.d.f. f(x) is obtained by inverting the cumu-
lative distributions in Egs. (4) and (5), substituting
these results in Eq. (6),

F~Y(y) = aFy '(y) + bF2 '(y), ™

deriving this with respect to y and solving for the
interpolated p.d.f. f(x),

S1(x1)f2(x2)

T = i + sy

®)

This is the Wasserstein geodesic between 1D distributions!
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Density Ratios and Classifiers

In general, given two densities p and g and samples

Xlu"'7Xan
Ylv"'ayan
. _ X1 ... Xo Y1 ... Y,
Give labels: 711 1 0 0
Classifier v:
p
P(u P(Z=1u)=——
()= P(Z = 1) = -2
and so
p__ ¥
g 1-%¢
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