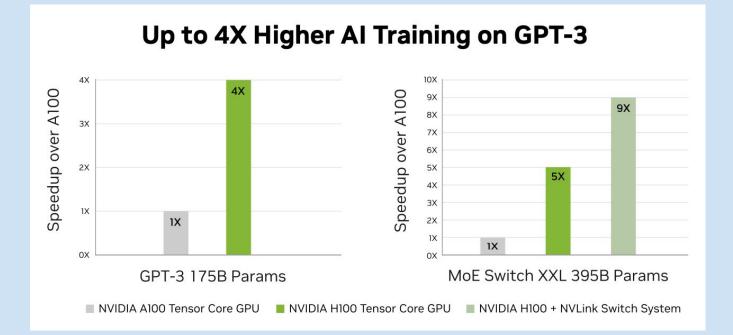
Fast and Furious Al-machines for physics at the LHC

Andrea Coccaro

Institute of Advanced Studies - Geneva

NVIDIA Corp

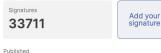


In the YTD timeframe

- Alphabet +50%
- Amazon +50%
- Apple +40%
- Microsoft +30%
- Nvidia +200%

Why?

A driver for training super-large models and behind all the recent hype on generative and LLM models



https://www.nvidia.com/en-us/data-center/hgx/

← All Open Letters

Pause Giant AI Experiments: An Open Letter

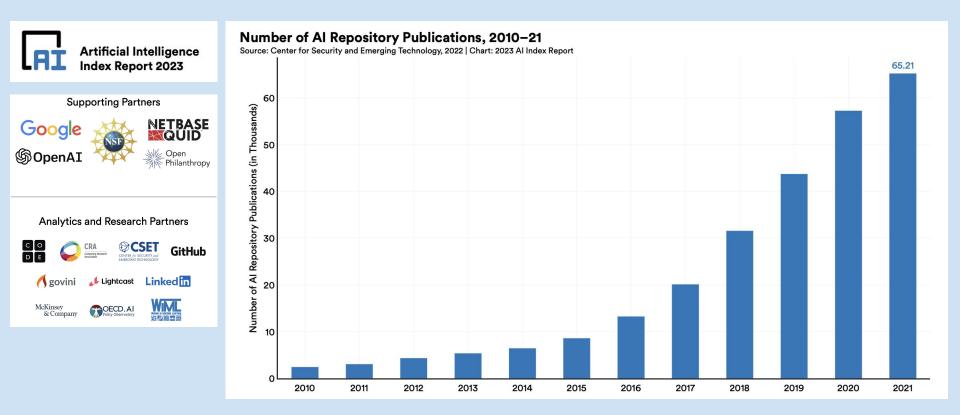
We call on all AI labs to immediately pause for at least 6 months the training of AI systems more powerful than GPT-4.

Published March 22, 2023

Why Pope Francis Is the Star of A.I.-Generated Photos

Francis has become a recurring favorite to show in incongruous situations, such as riding a motorcycle and attending Burning Man, in A.I.-generated images.

Possible but hardly inevitable. It becomes moderately more likely as people call it absurd and fail to take precautions against it, like checking for sudden drops in the loss function and suspending training. Mostly, though, this is not a necessary postulate of a doom story.


嫊 Perry E. Metzger 🤣 @perrymetzger · Apr 25

Eliezer and his acolytes believe it's inevitable AIs will go "foom" without warning, meaning, one day you build an AGI and hours or days later the thing has recursively self improved into godlike intelligence and then eats the world. Is this realistic?

5:44 PM · Apr 25, 2023 · 647K Views

Ukraine war: Deepfake video of Zelenskyy telling Ukrainians to 'lay down arms' debunked

https://aiindex.stanford.edu/report/

Real-time deep learning

Example of real-time deep learning

Self-driving cars

- Single self-driving car can produce O(10) TB/day
- Number of US circulating cars O(200) millions
- With <1 % autonomous vehicles the generated amount of data is not manageable centrally

How to approach the problem

- Dedicated computing architectures in small dimensions and low-power consumption
- Al programs on-site since latency matters and communication with a central server will always result in a delay

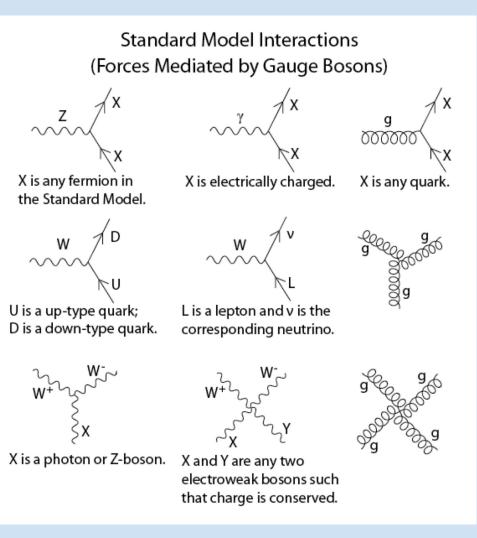
FPGA vs. GPU for Deep Learning

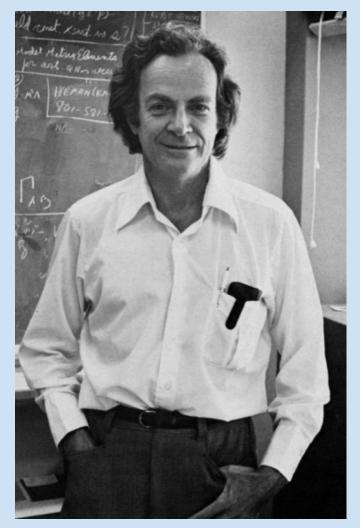
FPGAs are an excellent choice for deep learning applications that require low latency and flexibility

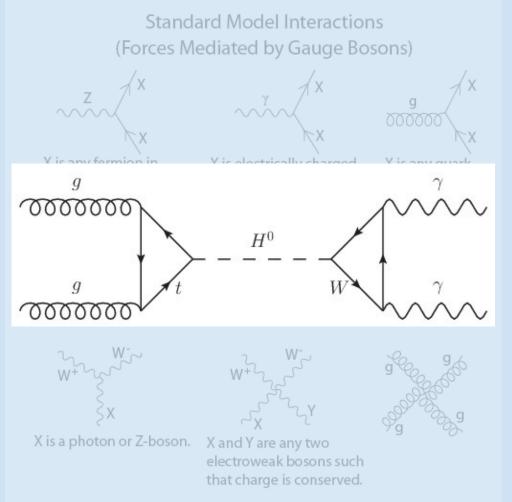
Artificial intelligence (AI) is evolving rapidly, with new neural network models, techniques, and use cases emerging regularly. While there is no single architecture that works best for all machine and deep learning applications, FPGAs can offer distinct advantages over GPUs and other types of hardware in certain use cases.

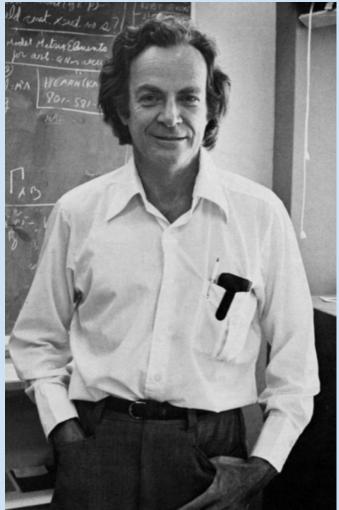
FPGA vs. GPU for Deep Learning

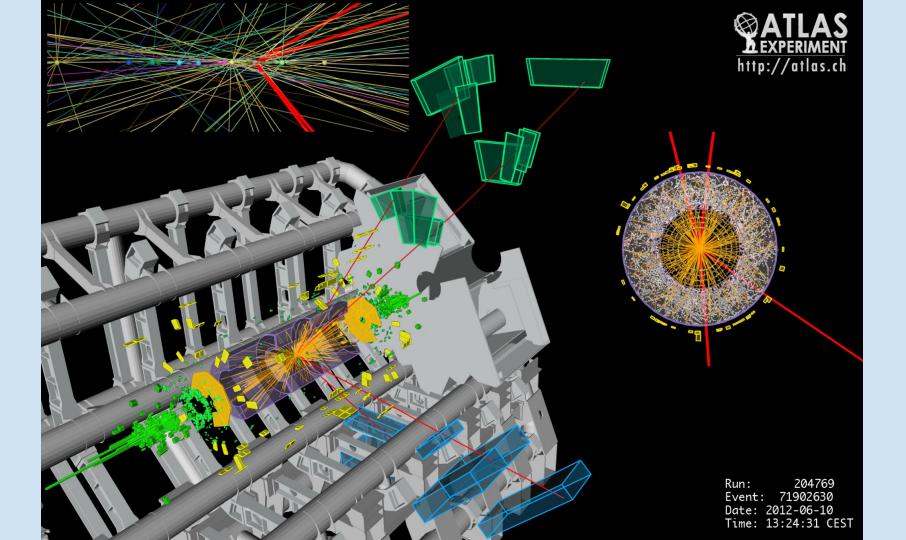
FPGAs are an excellent choice for deep learning applications that require low latency and flexibility

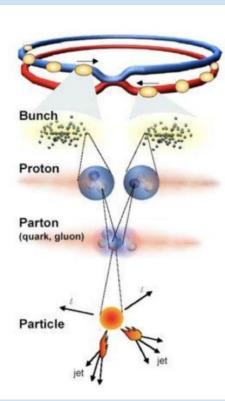


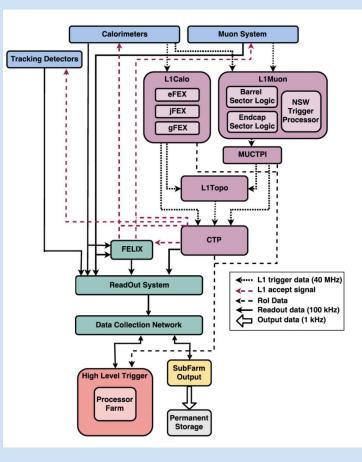

Artificial intelligence (AI) is evolving rapidly, with new neural network models, techniques, and use cases emerging regularly. While there is no single architecture that works best for all machine and deep learning applications, FPGAs can offer distinct advantages over GPUs and other types of hardware in certain use cases.


FPGAs vs GPUs


- Longer lifetime, more compatible with a typical car lifetime
- Lower power dissipation, no need of intense cooling
- Reduced electricity requirements
- Possible higher performance in terms of acceleration and throughput






Needle in a haystack

Proton-Proton	otons/bunch 10 ¹¹ am Crossing 25 ns am energy 6.5 TeV			
Protons/bunch	10 ¹¹			
Beam Crossing	25 ns			
Beam energy	6.5 TeV			
Luminosity	10 ³⁴ cm ⁻² s ⁻¹			

ATLAS Event Rate: 10⁹ interactions/s 25 Pile up events / crossing Interested Event: ~2 kHz Higgs:

1 per 3 hours

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Trigger Sele	L1 Peak	HLT Peak	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Trigger	Typical offline selection	L1 [GeV]	HLT [GeV]		Rate [Hz]
$ \begin{split} & \mbox{Single isolated tight e, $p_T > 27 {\rm GeV} & 22 (i) & 26 (i) & 31 & 1 \\ & \mbox{Single μ, $p_T > 52 {\rm GeV} & 22 (i) & 60 & 28 & 1 \\ & \mbox{Single τ, $p_T > 170 {\rm GeV} & 100 & 160 & 1.4 & 28 & 1 \\ & \mbox{Single τ, $p_T > 170 {\rm GeV} & 22 (i) & 60 & 28 & 1 \\ & \mbox{Single τ, $p_T > 170 {\rm GeV} & 22 (i) & 22 (i) & 24 & 22 & 28 & 16 & 28 & 28 & 28 & 28 & 28 & 28 & 28 & 2$			EI [GUV]		L=2.0×10 ³	$4 \text{ cm}^{-2}\text{s}^{-1}$
		Single isolated μ , $p_{\rm T} > 27$ GeV	20	26 (i)	16	218
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Single isolated tight $e, p_{\rm T} > 27 \text{ GeV}$	22 (i)	26 (i)	31	195
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Single leptons	Single μ , $p_{\rm T} > 52$ GeV	20	50	16	70
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Single $e, p_{\rm T} > 61 \text{ GeV}$	22 (i)	60	28	20
$ \begin{split} & \mbox{Two lepton} \\ & \mbox{Two r, } p_T > 30, \mbox{GeV} \\ & \mbox{Two r, } p_T > 30, \mbox{15 GeV} \\ & \mbox{Two r, } p_T > 30, \mbox{15 GeV} \\ & \mbox{Two r, } p_T > 30, \mbox{15 GeV} \\ & \mbox{Two r, } p_T > 30, \mbox{15 GeV} \\ & \mbox{Two r, } p_T > 30, \mbox{15 GeV} \\ & \mbox{Two r, } p_T > 30, \mbox{15 GeV} \\ & \mbox{Two r, } p_T > 30, \mbox{15 GeV} \\ & \mbox{Two r, } p_T > 30, \mbox{15 GeV} \\ & \mbox{Two r, } p_T > 30, \mbox{15 GeV} \\ & \mbox{12 (i), 10 (4; \mbox{15 b)} \\ & \mbox{Three } \mu, \mbox{cash p} > 5 \mbox{GeV} \\ & \mbox{Three} \mu, p_T > 31, \mbox{23 GeV} \\ & \mbox{Two p, } p_T > 21, \mbox{23 GeV} \\ & \mbox{Two losse } e, \mbox{np} + 2 \times 11, \mbox{13 GeV} \\ & \mbox{24 ki} \\ & \mbox{Two losse } e, \mbox{ne} \mu, p_T > 2 \times 13, \mbox{11 GeV} \\ & \mbox{24 ki} \\ & \mbox{Two losse } e, \mbox{ne} \mu, p_T > 2 \times 13, \mbox{11 GeV} \\ & \mbox{24 ki} \\ & \mbox{Two losse } e, \mbox{ne} \mu, p_T > 2 \times 13, \mbox{13 GeV} \\ & \mbox{24 ki} \\ & \mbox{Two losse } e, \mbox{ne} \mu, p_T > 2 \times 13, \mbox{14 GeV} \\ & \mbox{24 ki} \\ & \mbox{Two losse } \mu, \mbox{ne} \mu, p_T > 2 \times 13, \mbox{16 W} \\ & \mbox{14 tight} \mu, \mbox{24 ki} \\ & \mbox{14 tight} \mu, 24$			100	160	1.4	42
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Two μ , each $p_{\rm T} > 15 \text{ GeV}$		2×14	2.2	30
$ \begin{split} & \mbox{Two leptons} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						47
						13
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Two leptons					6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Two reptons			.,	00000	5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1222122	4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						93
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						17
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		One τ & one isolated $e, p_{\rm T} > 30, 18 \text{ GeV}$	12 (i), 15 (i) (+jets)	, , ,	4.6	19
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Three very loose $e, p_T > 25, 13, 13 \text{ GeV}$	$20, 2 \times 10$	24, 2 × 12	1.6	0.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Three leptons					9
						0.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Two loose e & one μ , $p_{\rm T} > 2 \times 13$, 11 GeV	$2 \times 8, 10$	$2 \times 12, 10$	2.3	0.1
	Signle photon	One loose γ , $p_{\rm T} > 145 { m GeV}$	24 (i)	140	24	47
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Two loose γ , each $p_{\rm T} > 55 \text{ GeV}$	2 × 20		3.0	7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Two photons	Two γ , $p_{\rm T}$ > 40, 30 GeV			3.0	21
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Two isolated tight γ , each $p_{\rm T} > 25 \text{ GeV}$	2 × 15 (i)	2×20 (i)	2.0	15
$ \begin{array}{ c c c c c } \hline Hole (p,1) & Hole (p,1) $		Jet ($R = 0.4$), $p_{\rm T} > 435 {\rm GeV}$	100	420	3.7	35
$B-\text{ptysics} \begin{array}{ c c c c c c } \hline & \text{One } b \ (\epsilon = 60\%), p_T > 285 \ \text{GeV} & 100 & 275 & 3.6 \\ \hline & \text{Two } b \ (\epsilon = 60\%), p_T > 185, 70 \ \text{GeV} & 100 & 175, 60 & 3.6 \\ \hline & \text{Two } b \ (\epsilon = 60\%), p_T > 185, 70 \ \text{GeV} & 100 & 175, 60 & 3.6 \\ \hline & \text{One } b \ (\epsilon = 40\%) \ \& \ \text{three jets, each } p_T > 85 \ \text{GeV} & 4 \times 15 & 4 \times 75 & 1.5 \\ \hline & \text{Two } b \ (\epsilon = 70\%) \ \& \ \text{one jet, } p_T > 65, 65, 160 \ \text{GeV} & 2 \times 30, 85 & 2 \times 55, 150 & 1.3 \\ \hline & \text{Two } b \ (\epsilon = 60\%) \ \& \ \text{two jets, each } p_T > 65 \ \text{GeV} & 4 \times 15, \ \eta < 2.5 & 4 \times 55 & 3.2 \\ \hline & \text{Multijets} & \hline & \text{Four jets, each } p_T > 125 \ \text{GeV} & 3 \times 50 & 4 \times 115 & 0.5 \\ \hline & \text{Five jets, each } p_T > 95 \ \text{GeV} & 4 \times 15 & 5 \times 85 & 4.8 \\ \hline & \text{Six jets, each } p_T > 95 \ \text{GeV} & 4 \times 15 & 6 \times 70 & 4.8 \\ \hline & \text{Six jets, each } p_T > 60 \ \text{GeV}, \ \eta < 2.0 & 4 \times 15 & 6 \times 57, \ \eta < 2.4 & 4.8 \\ \hline & E_T^{\text{miss}} & E_T^{\text{miss}} > 200 \ \text{GeV} & 50 & 110 & 5.1 \\ \hline & \text{Two } \mu, p_T > 11, 6 \ \text{GeV}, 0.1 < m(\mu, \mu) < 14 \ \text{GeV} & 11, 6 & 11, 6 \ (\text{di-}\mu) & 2.9 \\ \hline & \text{Two } \mu, p_T > 6, 6 \ \text{GeV}, 2.5 < m(\mu, \mu) < 2.9 \ \text{GeV} & 2 \times 6 \ (J/\psi, \text{topo}) & 2 \times 6 \ (J/\psi) & 1.4 \\ \hline & \text{Two } \mu, p_T > 6, 6 \ \text{GeV}, 7 < m(\mu, \mu) < 12 \ \text{GeV} & 2 \times 6 \ (T, \text{topo}) & 2 \times 6 \ (T) & 1.2 \\ \hline \end{array}$	Single jet			460	2.6	42
$B-\text{ptst} = \begin{cases} \hline \text{Two } b \ (\epsilon = 60\%), p_T > 185, 70 \ \text{GeV} & 100 & 175, 60 & 3.6 \\ \hline \text{One } b \ (\epsilon = 40\%) \ \& \ \text{three jets, each } p_T > 85 \ \text{GeV} & 4 \times 15 & 4 \times 75 & 1.5 \\ \hline \text{Two } b \ (\epsilon = 70\%) \ \& \ \text{one jet, } p_T > 65, 65, 160 \ \text{GeV} & 2 \times 30, 85 & 2 \times 55, 150 & 1.3 \\ \hline \text{Two } b \ (\epsilon = 60\%) \ \& \ \text{two jets, each } p_T > 65 \ \text{GeV} & 4 \times 15, \eta < 2.5 & 4 \times 55 & 3.2 \\ \hline \text{Multijets} & Four jets, each } p_T > 125 \ \text{GeV} & 3 \times 50 & 4 \times 115 & 0.5 \\ \hline \text{Five jets, each } p_T > 95 \ \text{GeV} & 4 \times 15 & 5 \times 85 & 4.8 \\ \hline \text{Six jets, each } p_T > 95 \ \text{GeV} & 4 \times 15 & 6 \times 70 & 4.8 \\ \hline \text{Six jets, each } p_T > 60 \ \text{GeV}, \eta < 2.0 & 4 \times 15 & 6 \times 55, \eta < 2.4 & 4.8 \\ \hline E_T^{\text{miss}} & E_T^{\text{miss}} > 200 \ \text{GeV} & 50 & 110 & 5.1 \\ \hline \text{B-physics} & \hline \begin{array}{c} \text{Two } \mu, p_T > 11, 6 \ \text{GeV}, 0.1 < m(\mu, \mu) < 14 \ \text{GeV} & 11, 6 & 11, 6 \ (\text{di-}\mu) & 2.9 \\ \hline \text{Two } \mu, p_T > 6, 6 \ \text{GeV}, 2.5 < m(\mu, \mu) < 2.9 \ \text{GeV} & 2 \times 6 \ (J/\psi, \text{topo}) & 2 \times 6 \ (J/\psi) & 1.4 \\ \hline \text{Two } \mu, p_T > 6, 6 \ \text{GeV}, 7 < m(\mu, \mu) < 12 \ \text{GeV} & 2 \times 6 \ (\Upsilon, \text{topo}) & 2 \times 6 \ (\Upsilon) & 1.2 \\ \hline \end{array}$	2007 1002 1	Jet $(R = 1.0), p_{\rm T} > 450 \text{ GeV}, m_{\rm jet} > 45 \text{ GeV}$	111 (topo: $R = 1.0$)	420, $m_{\rm jet} > 35$	2.6	36
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			100	275	3.6	15
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Two $b \ (\epsilon = 60\%), p_{\rm T} > 185, 70 \ {\rm GeV}$	100	175, 60	3.6	11
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<i>b</i> -jets	One b ($\epsilon = 40\%$) & three jets, each $p_{\rm T} > 85$ GeV	4 × 15	4 × 75	1.5	14
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Two <i>b</i> (ϵ = 70%) & one jet, <i>p</i> _T > 65, 65, 160 GeV		2 × 55, 150	1.3	17
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Two b ($\epsilon = 60\%$) & two jets, each $p_{\rm T} > 65$ GeV	$4 \times 15, \eta < 2.5$	4 × 55	3.2	15
			3×50	4×115	0.5	16
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Multijete	Five jets, each $p_{\rm T} > 95$ GeV	4 × 15	5 × 85	4.8	10
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	winnigets		4×15		4.8	4
$B\text{-physics} \begin{array}{ c c c c c c c } \hline \text{Two}\mu,p_{\text{T}}>11,6\text{GeV},0.1<\text{m}(\mu,\mu)<14\text{GeV} & 11,6 & 11,6(\text{di-}\mu) & 2.9 & 11,6(\text{di-}\mu) & 1.4 & 11,6(\text{di-}\mu) & 1.4 & 11,6(\text{di-}\mu) & 1.4 & 11,6(\text{di-}\mu) & 2.9 & 11,6(\text{di-}\mu) & 1.4 & 11,6(\text{di-}\mu) & 1.4(\text{di-}\mu) & 1.4(di-$		Six jets, each $p_{\rm T} > 60$ GeV, $ \eta < 2.0$	4 × 15	$6 \times 55, \eta < 2.4$	4.8	15
$B\text{-physics} \begin{array}{ c c c c c c c } \hline \text{Two}\mu,p_{\text{T}}>11,6\text{GeV},0.1<\text{m}(\mu,\mu)<14\text{GeV} & 11,6 & 11,6(\text{di-}\mu) & 2.9 & 11,6(\text{di-}\mu) & 1.4 & 11,6(\text{di-}\mu) & 1.4 & 11,6(\text{di-}\mu) & 1.4 & 11,6(\text{di-}\mu) & 2.9 & 11,6(\text{di-}\mu) & 1.4 & 11,6(\text{di-}\mu) & 1.4(\text{di-}\mu) & 1.4(di-$	$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\rm T}^{\rm miss} > 200 { m ~GeV}$	50	110	5.1	94
$B-physics = \begin{bmatrix} Two \ \mu, \ p_T > 6, 6 \text{ GeV}, 2.5 < m(\mu, \mu) < 4.0 \text{ GeV} & 2 \times 6 (J/\psi, \text{ topo}) & 2 \times 6 (J/\psi) & 1.4 \\ Two \ \mu, \ p_T > 6, 6 \text{ GeV}, 4.7 < m(\mu, \mu) < 5.9 \text{ GeV} & 2 \times 6 (B, \text{ topo}) & 2 \times 6 (B) & 1.4 \\ Two \ \mu, \ p_T > 6, 6 \text{ GeV}, 7 < m(\mu, \mu) < 12 \text{ GeV} & 2 \times 6 (\Upsilon, \text{ topo}) & 2 \times 6 (\Upsilon) & 1.2 \\ \end{bmatrix}$			11,6	11, 6 (di- μ)	2.9	55
B-physics Two $\mu, p_T > 6, 6 \text{ GeV}, 4.7 < m(\mu, \mu) < 5.9 \text{ GeV}$ $2 \times 6 (B, \text{ topo})$ $2 \times 6 (B)$ 1.4 Two $\mu, p_T > 6, 6 \text{ GeV}, 7 < m(\mu, \mu) < 12 \text{ GeV}$ $2 \times 6 (\Upsilon, \text{ topo})$ $2 \times 6 (\Upsilon)$ 1.2	D 1 .					55
Two $\mu, p_T > 6, 6 \text{ GeV}, 7 < m(\mu, \mu) < 12 \text{ GeV}$ $2 \times 6 (\Upsilon, \text{ topo})$ $2 \times 6 (\Upsilon)$ 1.2	B-physics			(177		6
						12
vian sale	Main Rate			1750		
86			86	200		

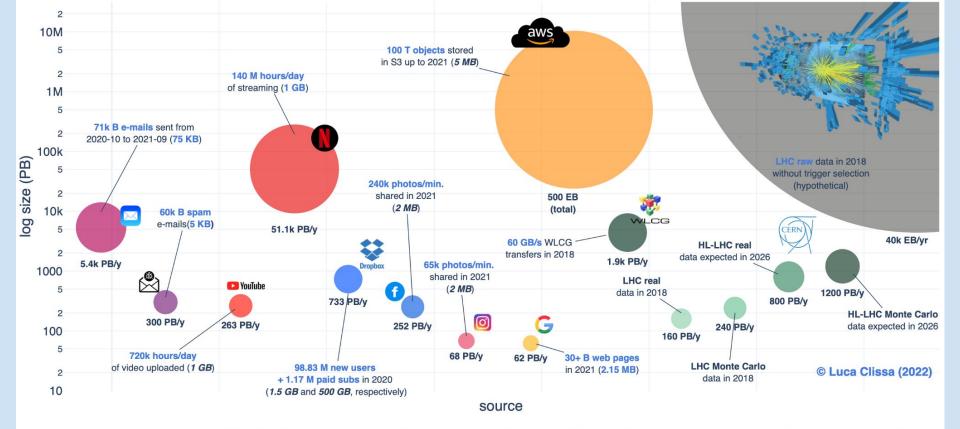
Real-time event selection at the LHC

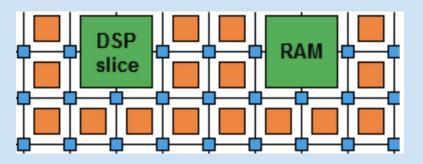
With a triggerless acquisition system

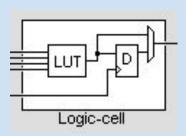
- 40 MHz interaction rate with O(1 MB/event)
- 40 TB/s scaling to O(10 EB/year)

Facebook in 2014

- 600 TB/day scaling to O(1 EB/year)
- Clearly a different business model compared to optimising the research output of the largest scientific endeavour

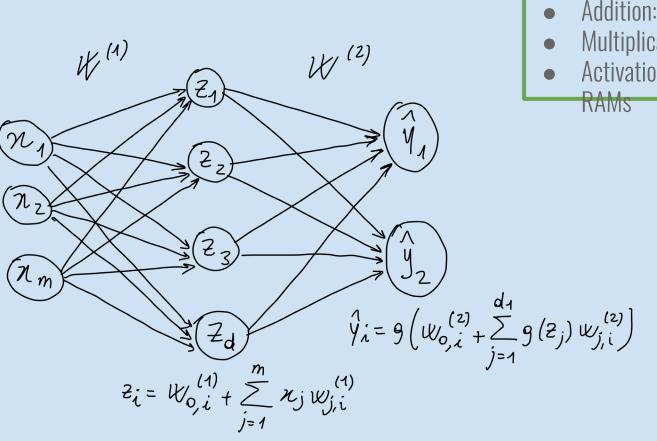




Figure 2.3: **Big Data sizes.** Bubble plot of the orders of magnitude of data produced by important big data players. The balloon areas illustrate the amount of data and the text annotations highlight the key factors considered in the estimates. Average per-unit sizes are reported in parentheses, where italic indicates measures reconstructed based on likely assumptions because no references were found.


BigData2021

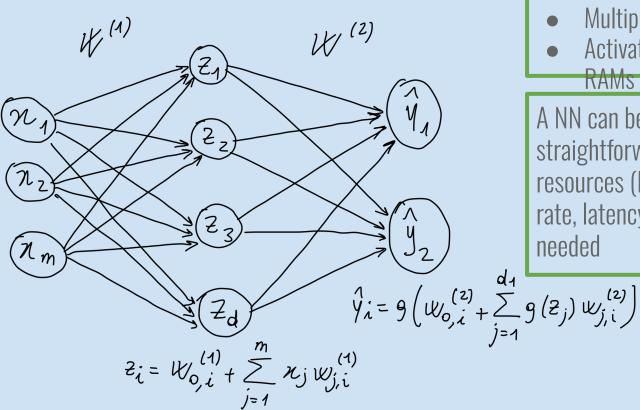
- How will we be triggering events in 2029+?
- Which design choices of the data acquisition system?
- How much AI will help?

As a community we need to provide answers to these questions ~now



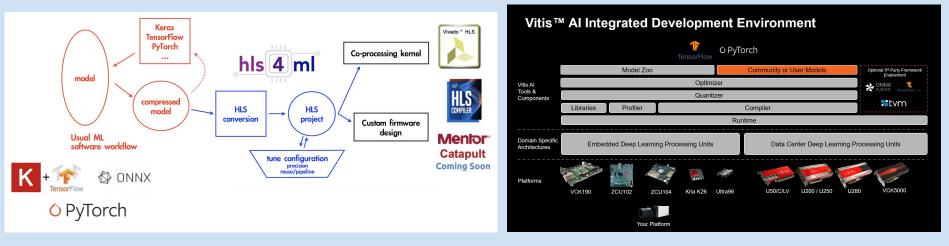
- Logic cell \Rightarrow A small look-up table with a D flip-flop
- Digital Signal Processors (DSPs) \Rightarrow logic units for multiplications
- Random-Access memories (RAMs) \Rightarrow embedded memory elements

Two ways to interact with FPGA programming


- Low-level programming languages to describe electronic circuits (HDL)
- High-level synthesis from C/C++ code (Vivado HLS)

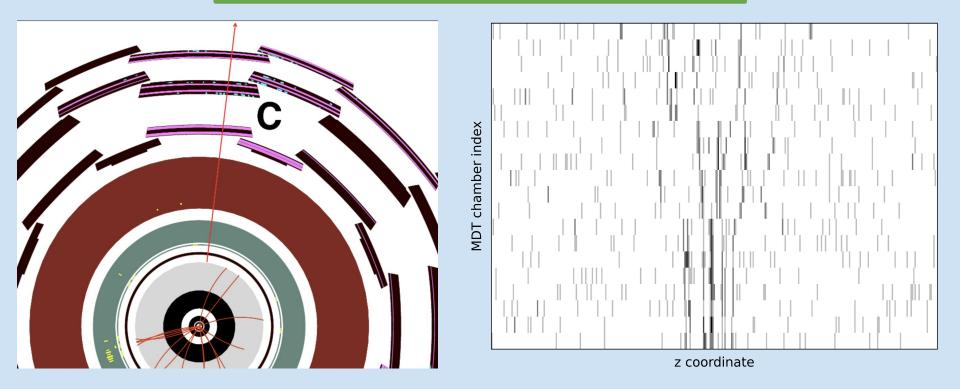
Neural network inference

- Addition: logic cells
- **Multiplication: DSPs**
- Activation function: precomputed in

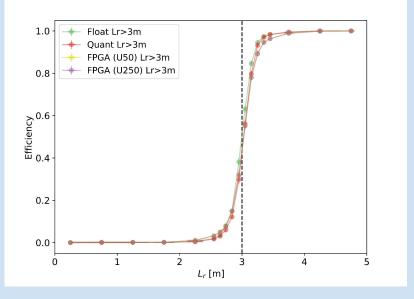

Neural network inference

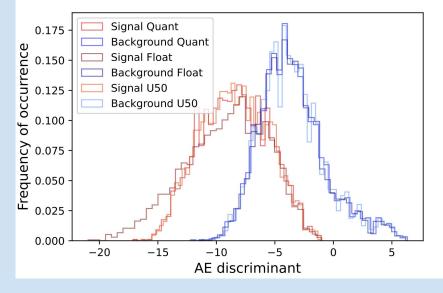
- Addition: logic cells
- Multiplication: DSPs
- Activation function: precomputed in

A NN can be deployed in a FPGA but not straightforward to understand the needed resources (DSPs, RAMs). Plus transferring rate, latency requirements, etc. Studies are needed


NN deployment into FPGAs

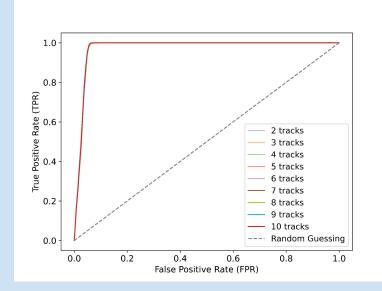
https://fastmachinelearning.org/

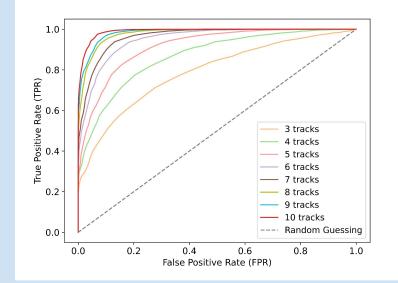

<u>Vitis-Al</u>


Fast inference on FPGAs for triggering on neutral LLPs

arXiv:2307.05152

Two models: a CNN to regress the LLP decay length position and an AE to detect anomalies



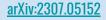


CNN model

Two models: a CNN to regress the LLP decay length position and an AE to detect anomalies

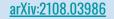
CNN model

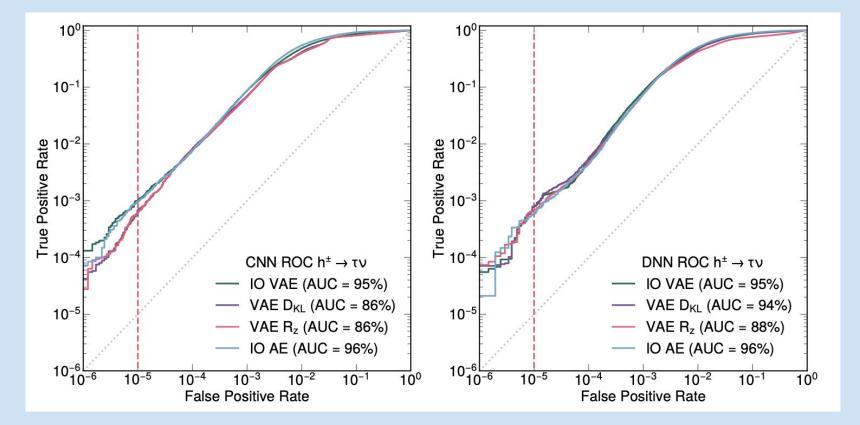
AE model


arXiv:2307.05152

Two models: a CNN to regress the LLP decay length position and an AE to detect anomalies

	CPU	GPU	U50	U250
Inference time [ms]	5.1 ± 1.1	1.0 ± 0.1	3.7 ± 0.1	3.1 ± 0.4
Throughput [fps]	302 ± 4	9930 ± 187	950 ± 5	553 ± 4


Table 1: Inference time in ms and throughput in frames per second for the CNN model on different target architectures. The results include the actual deployment of the model on the FPGA U50 and U250 accelerator cards.


Real measurement on FPGA devices mounted on dedicated nodes.

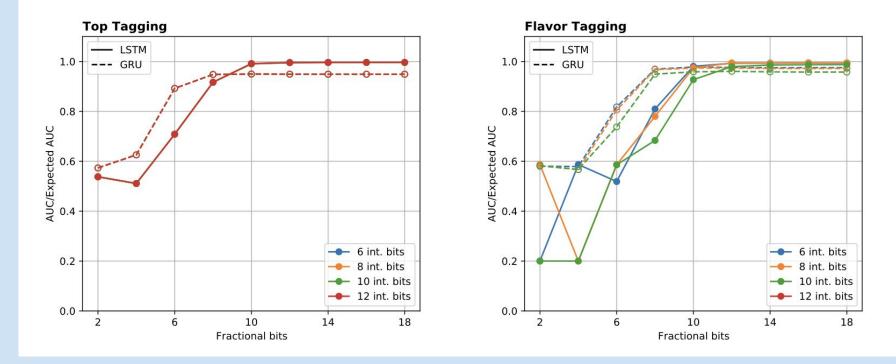
New physics detection with autoencoders directly at L1 trigger

- (V)AE models based on DNN and CNN trained on kinematics of up to 18 reconstructed physics objects per event
- Quantization-aware training and post-training quantization for reducing resources while maintaining accuracy
- Fully on-chip model implementation to stay within the L1 trigger latency

arXiv:2108.03986

TABLE III. Resource utilization and latency for the quantized and pruned DNN and CNN (V)AE models. Resources are based on the Vivado estimates from Vivado HLS 2020.1 for a clock period of 5 ns on Xilinx VU9P.

Model	DSP [%]	LUT [%]	FF [%]	BRAM [%]	Latency [ns]	II [ns]
DNN AE QAT 8 bits	2	5	1	0.5	130	5
CNN AE QAT 4 bits	8	47	5	6	1480	895
DNN VAE PTQ 8 bits	1	3	0.5	0.3	80	5
CNN VAE PTQ 8 bits	10	12	4	2	365	115



Low-latency RNN on FPGA for classification

Table 1: Network hyperparameters and total number of trainable parameters for different benchmark models.

	Sequence	Input Hidden Dense output			Trainable parameters			
Benchmark	length	vector	vector	layer	vector	Non-RNN	LSTM	GRU
		sıze	sıze	sızes	sıze	layers		
Top tagging	20	6	20	64	1	1,409	2,160	1,680
Flavor tagging	15	6	120	50/10	3	6,593	60,960	46,080
QuickDraw	100	3	128	256/128	5	66,565	67,584	51,072

- Addition of RNN support within hls4ml
- Successful simulation of FPGA deployment of RNN models with parameters from O(1k) to O(100k) and latencies from O(1 us) to O(100 us)

Ratios of fixed-point and floating-point AUCs for top-tagging and flavour-tagging classification

arXiv:2207.00559

Physics case - More examples

Fast convolutional neural networks on FPGAs with hls4ml

Thea Aarrestad, Vladimir Loncar, Nicolò Ghielmetti, Maurizio Pierini, Sioni Summers, Jennifer Ngadiuba, Christoffer Petersson, Hampus Linander, Yutaro liyama, Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Dylan Rankin, Sergo Jindariani, Kevin Pedro, Nhan Tran, Mia Liu, Edward Kreinar, Zhenbin Wu, Duc Hoang

FPGA-accelerated machine learning inference as a service for particle physics computing

Javier Duarte · Philip Harris · Scott Hauck · Burt Holzman · Shih-Chieh Hsu · Sergo Jindariani · Suffian Khan · Benjamin Kreis · Brian Lee · Mia Liu · Vladimir Lončar · Jennifer Ngadiuba · Kevin Pedro · Brandon Perez · Maurizio Pierini · Dylan Rankin · Nhan Tran · Matthew Trahms · Aristeidis Tsaris · Colin Versteeg · Ted W. Way · Dustin Werran · Zhenbin Wu

Model compression and simplification pipelines for fast deep neural network inference in FPGAs in HEP

Simone Francescato², Stefano Giagu¹, Federica Riti³, Graziella Russo¹, Luigi Sabetta^{1,a}, Federico Tortonesi¹

Conclusions

Smarter triggers are needed for the high-luminosity program at the LHC

Al is with us, and will remain

Low-latency is the key, and FPGA-based acceleration is an interesting area of active R&D

Various interesting projects and studies already in the literature, summarised a few here

A rigorous comparison of farm designs and the impact on physics is still lacking