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Speedup over A100

A driver for training super-large models and behind all the recent hype
on generative and LLM models
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NVIDIA A100 Tensor Core GPU M NVIDIA H100 Tensor Core GPU NVIDIA H100 + NVLink Switch System

https://www.nvidia.com/en-us/data-center/hgx/
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GENERATED BY A.l.

< All Open Letters

Pause Giant Al Experiments: An Open .
Letter Why Pope Francis Is the Star of A.I.-

We call on all Al labs to immediately pause for at least 6 months the Generated PhOtOS

training of Al systems more powerful than GPT-4. . . . L.
Francis has become a recurring favorite to show in incongruous

situations, such as riding a motorcycle and attending Burning

signature

Man, in A.l.-generated images.

Add your

March 22,2023

‘a, Eliezer Yudkowsky [l &

&

Possible but hardly inevitable. It becomes moderately more likely as
people call it absurd and fail to take precautions against it, like checking

for sudden drops in the loss function and suspending training. Mostly, U kra| ne war: Dee pfa ke V|deo O'F
_ ‘, Zelenskyy telling Ukrainians to 'lay down
% Perry E. Metzger & @perryi - Apr 25
Eliezer and his acolytes believe it’s inevitable Als will go “foom” without a rm S ! d e b u n ked

warning, meaning, one day you build an AGI and hours or days later the thing
has recursively self improved into godlike intelligence and then eats the world.
Is this realistic?

though, this is not a necessary postulate of a doom story.



https://aiindex.stanford.edu/report/
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Example of real-time deep learning

Self-driving cars

e JSingle self-driving car can produce 0(10) TB/day

e Number of US circulating cars 0(200) millions

e With <1 % autonomous vehicles the generated
amount of data is not manageable centrally

How to approach the problem

e Dedicated computing architectures in small
dimensions and low-power consumption

e Al programs on-site since latency matters and
communication with a central server will always
result in a delay




https://www.intel.com/content/www/us/en/artificial-intelligence/programmable/fpga-gpu.html

FPGA vs. GPU for Deep Learning

FPGAs are an excellent choice for deep learning applications that require low latency and flexibility

Artificial intelligence (Al) is evolving rapidly, with new neural network models, techniques, and
use cases emerging regularly. While there is no single architecture that works best for all machine
and deep learning applications, FPGAs can offer distinct advantages over GPUs and other types
of hardware in certain use cases.


https://www.intel.com/content/www/us/en/artificial-intelligence/programmable/fpga-gpu.html

https://www.intel.com/content/www/us/en/artificial-intelligence/programmable/fpga-gpu.html

FPGA vs. GPU for Deep Learning

FPGAs are an excellent choice for deep learning applications that require low latency and flexibility

Artificial intelligence (Al) is evolving rapidly, with new neural network models, techniques, and
use cases emerging regularly. While there is no single architecture that works best for all machine
and deep learning applications, FPGAs can offer distinct advantages over GPUs and other types
of hardware in certain use cases.

FPGAs vs GPUs

Longer lifetime, more compatible with a typical car lifetime

Lower power dissipation, no need of intense cooling

Reduced electricity requirements

Possible higher performance in terms of acceleration and throughput


https://www.intel.com/content/www/us/en/artificial-intelligence/programmable/fpga-gpu.html
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Standard Model Interactions
(Forces Mediated by Gauge Bosons)

X X
Z v X g
X X X

X is any fermion in Xis electrically charged.  Xis any quark.
the Standard Model.
D v g9
N vav“< g
L
. 9
U is a up-type quark; Lis alepton andv is the

D is adown-type quark.  corresponding neutrino.

W- W-
"L K
X Y
X

Xis a photon or Z-boson. X andY are any two
electroweak bosons such
that charge is conserved.
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@ATLAS

EXPERIMENT
http://atlas.ch

Run: 204769
Event: 71902630
Date: 2012-06-10
Time: 13:24:31 CEST




Needle in a haystack

Proton

Parton
(quark, gluon)

Particle .

Proton-Proton

10? interactions/s

25 Pile up events / crossing
Interested Event:

~2 kHz

Higgs:

1 per 3 hours

Protons/bunch 10™

Beam Crossing 25ns

Beam energy 6.5 TeV

Luminosity 10*cm?s™
ATLAS Event Rate:
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Trigger Selection L1 Peak HLT Peak
Trigger Typical offline selection L1 [GeV] HLT [GeV] Rate [kHz] i Rat_e7[l-_IT]

L=2.0x10"" cm™~s

Single isolated u, pr > 27 GeV 20 26 (i) 16 218

Single isolated tight e, pt > 27 GeV 22 (i) 26 (i) 31 195

Single leptons | Single u, pt > 52 GeV 20 50 16 70
Single e, pr > 61 GeV 22 (i) 60 28 20

Single 7, py > 170 GeV 100 160 1.4 42

Two u, each pt > 15 GeV 2x 10 2x 14 22 30

Two u, pr > 23,9 GeV 20 22,8 16 47

Two very loose e, each pt > 18 GeV 2x 15 (i) 2x17 2.0 13
. One e & one u, pr > 8 25 GeV 20 (u) 7,24 16 6
Twoleptons o rere & one fiypr > 15, 15 GOV 15, 10 17, 14 2.6 5
One e & one u, pt > 27,9 GeV 22 (e, 1) 26, 8 21 4

Two 7, pt > 40, 30 GeV 20 (i), 12 (i) (+jets, topo) 35,25 57 93

One 7 & one isolated u, pt > 30, 15 GeV 12 (i), 10 (+jets) 25, 14 (i) 24 17

One 7 & one isolated e, pr > 30, 18 GeV 12 (i), 15 (i) (+jets) 25,17 (i) 4.6 19

Three very loose e, pt > 25, 13, 13 GeV 20,2 x 10 24,2 x 12 1.6 0.1
Three u, each pt > 7 GeV 3x6 3x6 0.2 7]
Three leptons Three u, pt > 21,2 x5 GeV 20 20,2 x4 16 9
Two u & one loose e, pr > 2 x 11, 13 GeV 2x 10 (u) 2x 10,12 22 0.5

Two loose e & one u, pr > 2 x 13, 11 GeV 2x 8,10 2x%x12,10 23 0.1

[ Signle photon [ One loose y, pr > 145 GeV 24 (i) [ 140 24 [ 47 |

Two loose y, each pt > 55 GeV 2x20 2 x50 3.0 1
Two photons Twoy, pt > 40, 30 GeV 2 %20 35,25 3.0 21
Two isolated tight y, each pt > 25 GeV 2 x 15 (i) 2 %20 (1) 2.0 15

Jet (R = 0.4), pr > 435 GeV 100 420 3.7 35
Single jet Jet (R = 1.0), pt > 480 GeV 111 (topo: R =1.0) 460 2.6 42
Jet (R = 1.0), pr > 450 GeV, mije > 45 GeV 111 (topo: R = 1.0) 420, mje, > 35 2.6 36

One b (e = 60%), pr > 285 GeV 100 275 3.6 15
Two b (e = 60%), pt > 185,70 GeV 100 175, 60 3.6 11

b—jets One b (e = 40%) & three jets, each pt > 85 GeV 4x15 4x75 1:5 14
Two b (e = 70%) & one jet, pt > 65, 65, 160 GeV 2 x 30,85 2 x 55,150 1:3 17

Two b (€ = 60%) & two jets, each pt > 65 GeV 4x15,In1<2.5 4 x 55 32 15

Four jets, each pt > 125 GeV 3 x50 4x115 0.5 16

Multiiets Five jets, each pt > 95 GeV 4x15 5x85 4.8 10
J Six jets, each pt > 80 GeV 4x15 6x70 4.8 4

Six jets, each pt > 60 GeV, 7] < 2.0 4x15 6x55,|nl <24 4.8 15

[ EmEs [ EFS > 200 GeV 50 [ 110 5.1 [ 94 ]

Two u, pt > 11,6 GeV, 0.1 < m(u, ) < 14 GeV 11,6 11, 6 (di-u) 2.9 55

B-physics Two u, pr > 6,6 GeV, 2.5 < m(u, u) < 4.0 GeV 2 X6 (J/y, topo) 2x6(J/Y) 1.4 55
DAY Two i, pr > 6, 6 GeV, 4.7 < m(i, f1) < 5.9 GeV 2% 6 (B, topo) 2%6(B) 4 6
Two u, pt > 6,6 GeV, 7 < m(u, u) < 12 GeV 2 %6 (T, topo) 2%x6(T) 1.2 12

Main Rate 36 1750
B-physics and Light States Rate 200




Real-time event selection at the LHC

With a triggerless acquisition system

e 40 MHz interaction rate with O(1 MB/event)
e 40 TB/s scaling to O(10 EB/year)

Facebook in 2014

e 600 TB/day scaling to O(1 EB/year)

e (learly a different business model compared to
optimising the research output of the largest
scientific endeavour
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100 T objects stored
in S3 up to 2021 (5 MB)

2 140 M hours/day
1M of streaming (1 GB)
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o)
m
a-
s 240k photos/min.
3 shared in 2021 500 EB
2 60k B spam (2mB) (total)
(o)) -mai CG
3 e-mails(5 KB) 51.1k PBfy CERN
s 60 GB/s WLCG — HL-LHC real { 40k EB/yr
transfers in 2018 data expected in 2026
1000 S4kPBA Dropbox 65k photos/min. 1.9k PBYy P
shared in 2021 LHC real
D3 YouTube 2 MB) i
5 ( data in 2018 1200 PBYy
733 PBly e ; 800 PBly
2 P A1y HL-LHC Monte Carlo
100 300 PBYy 263 PBly 252 PBly @ < 240 PBly data expected in 2026
160 PBly
5 R
720k hours/day 68 PBly 62PB/y 30+ B web pages N
of video uploaded (1 GB) 98.83 M new users in 2021 (2.15 MB) onte Carlo .
2 o © L li 2022
+1.17 M paid subs in 2020 data in 2018 an:Giama GRaT)
10 (1.5 GB and 500 GB, respectively)
source

Figure 2.3: Big Data sizes. Bubble plot of the orders of magnitude of data produced by important big data players. The balloon areas illustrate the amount of data
and the text annotations highlight the key factors considered in the estimates. Average per-unit sizes are reported in parentheses, where italic indicates measures
reconstructed based on likely assumptions because no references were found.

BigData2021


https://clissa.github.io/BigData2021/BigData2021.html

x B, P 0O , pPD;
Collision systems pp, pPb, Po-Pb XeF-D)?e,pr-Pb ?)I%bp Pb-Pb pgb[DPb PP, PA?, AA PP, PA?, AA

Run 3 Run 4
LHC schedule 2022 - 2025 2029 - 2032 m

- ALICE 2.1
ALICE upgrade
LHCb
upgrade Ib
ATLAS
?&Ik‘ﬁé -hase [ upgrade_
L cMS
phase | upgrades

e How will we be triggering events in 2029+?
e Which design choices of the data acquisition system?
e How much Al will help?

As a community we need to provide answers to these questions ~now
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e logic cell = A small look-up table with a D flip-flop
o Digital Signal Processors (DSPs) = logic units for multiplications

e Random-Access memories (RAMs) = embedded memory elements

Two ways to interact with FPGA programming

Logic-cell

e low-level programming languages to describe electronic circuits (HDL)

e High-level synthesis from C/C++ code (Vivado HLS)




Neural network inference

e Addition: logic cells
(2) e Multiplication: DSPs
W e Activation function: precomputed in

@\ @ RAMS




Neural network inference

@A X ‘@

e Addition: logic cells
e Multiplication: DSPs
e Activation function: precomputed in

NDAALL
NAIVIS

A NN can be deployed in a FPGA but not
straightforward to understand the needed
resources (DSPs, RAMs). Plus transferring
rate, latency requirements, etc. Studies are
needed

o4
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NN deployment into FPGAs

Keras

Vitis™ Al Integrated Development Environment
TensorFlow

v. -processing kernel y
- - his 4 ml

Model Zoo Community or User Models | Optional 31 Party Framework |
: Enablement 1
model — : ;
i A Vitis Al Optimizer ; - :
\ 3 Tools & i : UNTINE :
N Components Quantizer H ]
/ compressed e . : :
model — HLS ] S COMPILER Libraries I Profiler I Compiler ! ]
/ conversion {

Vivado™ HLS

Custom firmware Runtime
Usual ML design

software workflow Jf Menbr gfcmg;if:scmc Embedded Deep Learning Processing Units Data Center Deep Learning Processing Units
Catapult

tune configuration

pre/(i;\orlx
- reuse/pipeline
m + € ONNX Pratorms

= \
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O PyTorch - B

Your Platform

https://fastmachinelearning.org/ Vitis-Al



https://xilinx.github.io/Vitis-AI/3.0/html/index.html
https://fastmachinelearning.org/

Physics case - Example #1

Fast inference on FPGAS for triggering on neutral LLPS

MDT chamber index

arXiv:23071.05152



https://arxiv.org/abs/2307.05152

Physics case - Example #1

Two models: a CNN to regress the LLP decay length position and an AE to detect anomalies
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Physics case - Example #1

Two models: a CNN to regress the LLP decay length position and an AE to detect anomalies
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Physics case - Example #1

Two models: a CNN to regress the LLP decay length position and an AE to detect anomalies

CPU GPU U50 U250
Inference time [ms] 5.1+ 11 1.0£01 3.7+£01 31404
Throughput [fps] 302 +4 9930 + 187 950 +5 553 + 4

Table 1: Inference time in ms and throughput in frames per second for the CNN model
on different target architectures. The results include the actual deployment of the model
on the FPGA Ub50 and U250 accelerator cards.

Real measurement on FPGA devices mounted on dedicated nodes.

arXiv:23071.05152


https://arxiv.org/abs/2307.05152

Physics case - Example #2

‘ New physics detection with autoencoders directly at L1 trigger ‘

(V)AE models based on DNN and CNN trained on kinematics of up to 18 reconstructed

physics objects per event
Quantization-aware training and post-training quantization for reducing resources while

maintaining accuracy
Fully on-chip model implementation to stay within the L1 trigger latency

arXiv:2108.03986



https://arxiv.org/abs/2108.03986

True Positive Rate

Physics case - Example #2
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https://arxiv.org/abs/2108.03986

Physics case - Example #2

TABLE III. Resource utilization and latency for the quantized and pruned DNN and CNN (V)AE models. Resources are based
on the Vivado estimates from Vivado HLS 2020.1 for a clock period of 5ns on Xilinx VU9P.

Model DSP (%] |LUT [%] |FF [%] BRAM [%]|Latency [ns||II [ns]
DNN AE QAT 8 bits 2 ) 1 0.5 130 )
CNN AE QAT 4 bits 8 47 5 6 1480 895
DNN VAE PTQ 8 bits 1 3 0.5 0.3 80 )
CNN VAE PTQ 8 bits 10 12 4 2 365 115

arXiv:2108.03986



https://arxiv.org/abs/2108.03986

Physics case - Example #3
Low-latency RNN on FPGA for classification

Table 1: Network hyperparameters and total number of trainable parameters for different benchmark models.

| Sequence | Input | Hidden | Dense | output | Trainable parameters
Benchmark 1
ength vector | vector layer vector | Non-RNN | LSTM GRU
size size sizes size layers
Top tagging 20 6 20 64 1 1,409 | 2,160 | 1,680
Flavor tagging 15 6 120 50/10 3 6,593 | 60,960 | 46,080
QuickDraw 100 3 128 256/128 5 66,565 | 67,584 | 51,072

e Addition of RNN support within his4ml
e Successful simulation of FPGA deployment of RNN models with parameters from O(1k) to
0(100k) and latencies from O(1 us) to O(100 us)

arXiv:2201.00559


https://arxiv.org/abs/2207.00559

Physics case - Example #3
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Physics case - More examples

Fast convolutional neural networks on FPGAs with his4ml

Thea Aarrestad, Vladimir Loncar, Nicolo Ghielmetti, Maurizio Pierini, Sioni Summers, Jennifer Ngadiuba, Christoffer Petersson, Hampus
Linander, Yutaro liyama, Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Dylan Rankin, Sergo Jindariani, Kevin Pedro, Nhan Tran, Mia Liu,
Edward Kreinar, Zhenbin Wu, Duc Hoang

FPGA-accelerated machine learning inference as a service for
particle physics computing

Javier Duarte - Philip Harris - Scott Hauck - Burt Holzman -
Shih-Chieh Hsu - Sergo Jindariani - Suffian Khan - Benjamin Kreis -
Brian Lee - Mia Liu - Vladimir Lonéar - Jennifer Ngadiuba - Kevin
Pedro - Brandon Perez - Maurizio Pierini - Dylan Rankin - Nhan
Tran - Matthew Trahms . Aristeidis Tsaris - Colin Versteeg - Ted W.
Way - Dustin Werran - Zhenbin Wu

Model compression and simplification pipelines for fast deep
neural network inference in FPGAs in HEP

Simone Francescato?(®, Stefano Giagu'(), Federica Riti®®, Graziella Russo!(®, Luigi Sabetta?®, Federico
Tortonesi!



Conclusions

Smarter triggers are needed for the high-luminosity program at the LHC

Al is with us, and will remain

Low-latency is the key, and FPGA-based acceleration is an interesting area of active R&D
Various interesting projects and studies already in the literature, summarised a few here

A rigorous comparison of farm designs and the impact on physics is still lacking



