

Spherical Fourier-Bessel Power Spectrum for SPHERE^x

Robin Wen, on behalf of Henry Gebhardt California Institute of Technology

SPHERE*: An All-Sky Infrared Spectral Survey Satellite

Designed to Explore

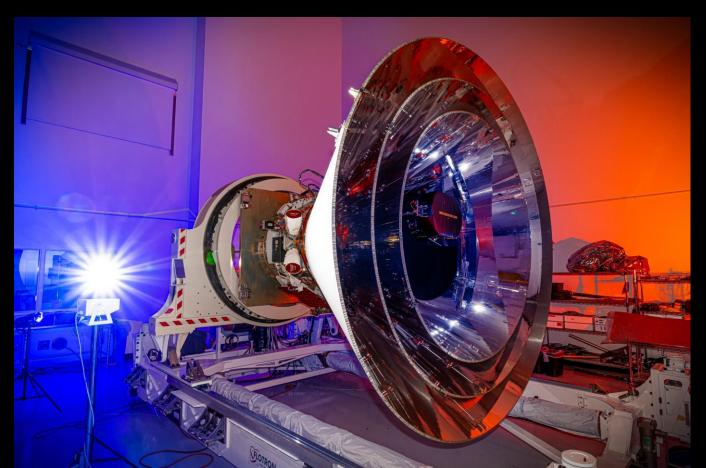
- Origin of the Universe
- Origin and History of Galaxies
- Origin of Water in Planetary Systems

First All-Sky Near-IR Spectral Survey

102 bands in 0.75-5 µm Scan full-sky 4 times in 2 years

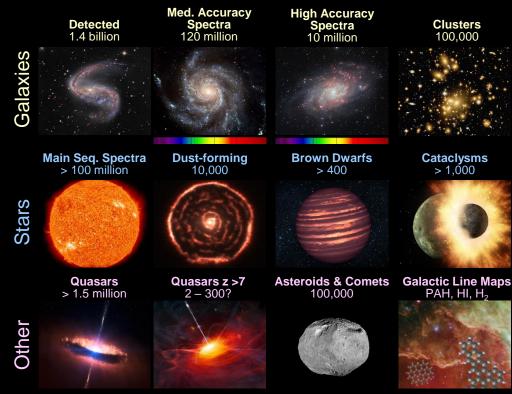
Elegantly Simple

- Single Observing Mode
- No Moving Parts in Instrument


PI: Jamie Bock -- Caltech/JPL PS: Olivier Doré -- JPL

Launch in early 2025!

SPHERE^X PROVIDES A RICH ALL-SKY SPECTRAL CATALOG

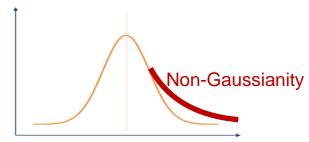

102 wavelength channels **Spectral Data**

All-Sky Survey

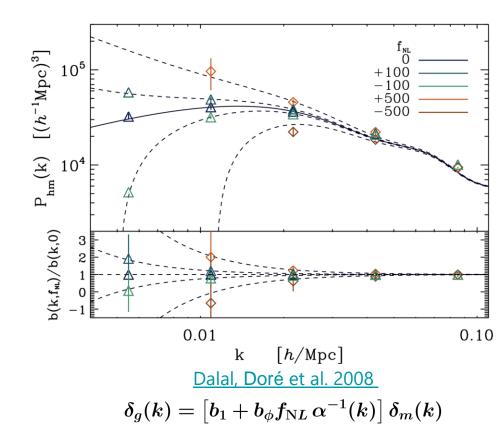
Spectral Da Cube

SPHEREx provides a new and unique dataset

a complete near-infrared spectrum for every 6" pixel on the sky

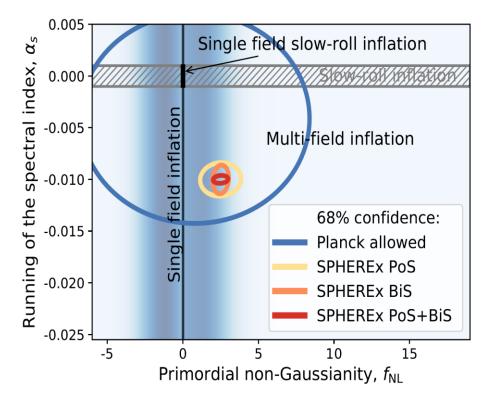


All-Sky surveys demonstrate high scientific return with lasting data legacy used across astronomy (COBE, IRAS, GALEX, WMAP, Planck, WISE) Many exciting discoveries will come from the community



SPHERE^x Constrains Local Primordial Non-Gaussianity (PNG)

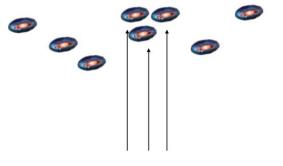
$$\Phi(\boldsymbol{x}) = \varphi(\boldsymbol{x}) + f_{\mathrm{NL}} \left(\varphi^2(\boldsymbol{x}) - \left\langle \varphi^2 \right\rangle
ight)$$

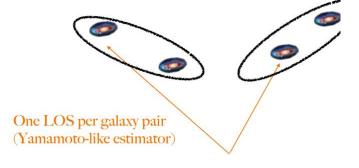


- Single-field inflation generically predicts $f_{\rm NL} < 0.01$
- Multi-field inflation generically predicts $f_{\rm NL} \sim {\cal O}(1)$
- Power Spectrum (PS): scaledependent bias
- Bispectrum (BS): primordial non-Gaussian perturbation

SPHERE^x Tests Inflation through local PNG

PS: $\sigma(f_{\rm NL}) \sim 1$ BS: $\sigma(f_{\rm NL}) \sim 0.7$ PS+BS: $\sigma(f_{\rm NL}) \sim 0.5$


<u>Doré et al. 2014</u> Heinrich, Doré, Krause 2024


*Multi-tracer analysis exploiting LPNG bias (b_{ϕ}) may offer further improvement!

Challenges

- Observational Systematics
- Redshift-error modelling (spectro-photometric survey)
- Theoretical Modeling at Large-scale
 - Wide-angle (WA) Effects
 - General Relativistic (GR) Effects
 - Covariance

Plane-parallel approximation

End-point LOS

Spherical Fourier-Bessel (SFB) Transform

Laplacian Eigenfunctions: $\nabla^2 f = -k^2 f$

Cartesian Coordinates:

 $f(\mathbf{k}, \mathbf{r}) = e^{-i\mathbf{k}\cdot\mathbf{r}}$

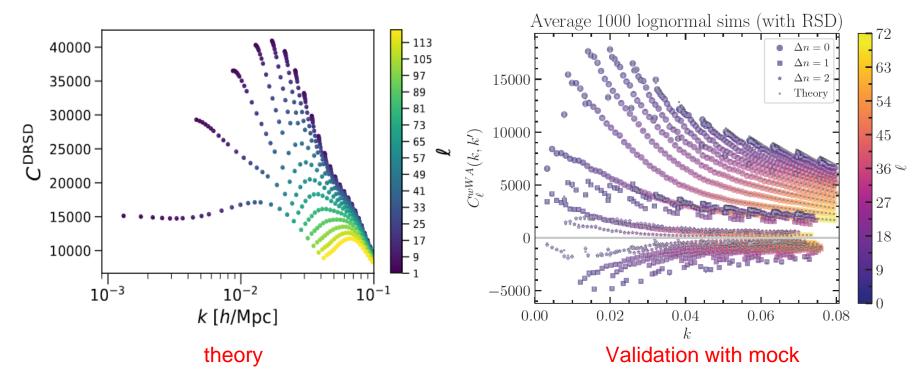
Fourier transform:

$$\tilde{\delta}(\mathbf{k}) = \int d^3 r \, e^{-i\mathbf{k}\cdot\mathbf{r}} \, \delta(\mathbf{r})$$

Spherical Coordinates: $f_{\ell m}(k,{f r})=j_\ell(kr)\,Y_{\ell m}({f \hat r})$

SFB transform:

$$\tilde{\delta}_{\ell m}(k) = \int d^3r \, j_{\ell}(kr) \, Y_{\ell m}(\mathbf{\hat{r}}) \, \delta(\mathbf{r})$$


- Obey curved-sky geometry. Retain angular modes
- Naturally include WA effects
- Remain in Fourier space, diagonal covariance
- Easy implementation of line-of-sight (GR) effects

SFB Power Spectrum

$$\langle \delta_{\ell_1 m_1}(k_1) \delta^*_{\ell_2 m_2}(k_2) \rangle = C_{\ell_1}(k_1, k_2) \delta^K_{\ell_1 \ell_2} \delta^K_{m_1 m_2}$$

Wen et al. 2024

Grasshorn Gebhardt & Doré 2024

SPHERE*: An All-Sky Infrared Spectral Survey Satellite

Looking forward to launch in early 2025!

UCI

CfA

Backup Slides

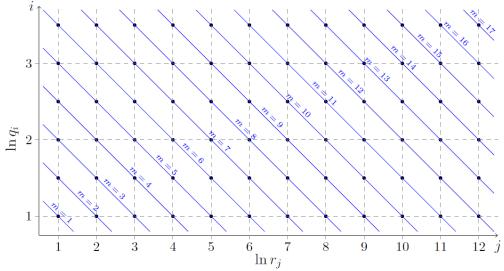
SFB Power Spectrum

$$\langle \delta_{\ell_1 m_1}(k_1) \delta^*_{\ell_2 m_2}(k_2) \rangle = C_{\ell_1}(k_1, k_2) \delta^K_{\ell_1 \ell_2} \delta^K_{m_1 m_2}$$

$$C_{\ell}^{\mathrm{R}}(k_1, k_2) = \int_0^\infty dq \, \mathcal{W}_{\ell}^{\mathrm{R}}(k_1, q) \mathcal{W}_{\ell}^{\mathrm{R}}(k_2, q) P_{\mathrm{m},0}(q)$$

$$\mathcal{W}_{\ell}^{\mathrm{R}}(k,q) \equiv \sqrt{\frac{2}{\pi}} q \int_{0}^{\infty} dx \, x^{2} j_{\ell}(kx) R(x) \Delta_{\ell}(x,q)$$
Projection to
SFB space angular kernel

$$\Delta_{\ell}(x,q)^{\text{DRSD}} = b_1(x)D_{\text{m}}(x,q)j_{\ell}(qx) + \frac{q}{\mathcal{H}(x)}v(x,q)j_{\ell}''(qx)$$


Drawbacks:

- Unfamiliar statistics
- Large Data Vector
- No FFT estimator
- Challenging non-linear modeling

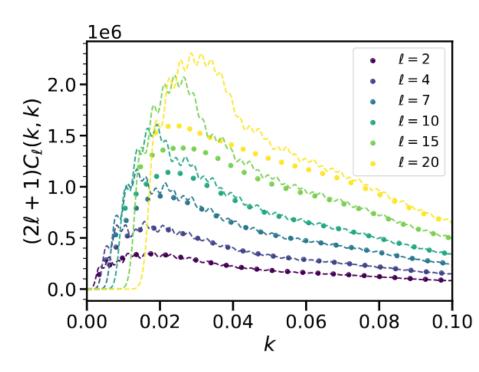
Numerical Technique: Iso-qr Integration

First proposed in <u>Grasshorn</u> <u>Gebhardt & Doré 2024</u>

- f(r,q) evaluation is fast, spherical Bessel is slow
- Spherical Bessel only depends on "qr" combination
- Choose q and r on iso-qr lines, efficiently cache spherical Bessel
- Quadrature integration
- A few seconds for Newtonian RSD, Performed MCMC with SFB
- Can be adapted for all GR effects

Continuous versus Discrete SFB

Continuous


$$\delta_{\ell m}(k) = \int_{\mathbf{x}} j_{\ell}(kx) Y_{\ell m}^{*}(\hat{\mathbf{n}}) \delta(\mathbf{x}) \quad \langle \delta_{\ell_{1}m_{1}}(k_{1}) \delta_{\ell_{2}m_{2}}^{*}(k_{2}) \rangle = C_{\ell_{1}}(k_{1},k_{2}) \delta_{\ell_{1}\ell_{2}}^{K} \delta_{m_{1}m_{2}}^{K}$$

Discrete

$$\begin{split} \delta_{n\ell m} &= \int_{\mathbf{x}} g_{n\ell}(x) \, Y_{\ell m}^*(\hat{\mathbf{n}}) \delta(\mathbf{x}) \qquad \left\langle \delta_{n_1 \ell_1 m_1} \delta_{n_2 \ell_2 m_2}^* \right\rangle = C_{\ell_1 n_1 n_2} \delta_{\ell_1 \ell_2}^K \delta_{m_1 m_2}^K \\ g_{n\ell}(x) &= c_{n\ell} \, j_\ell(k_{n\ell} x) + d_{n\ell} \, y_\ell(k_{n\ell} x) \\ \\ \int_{x_{\min}}^{x_{\max}} dx \, x^2 \, g_{n\ell}(x) \, g_{n'\ell}(x) = \delta_{nn'}^K \end{split}$$

Benefit of Discrete SFB

- Numerical Stability
- Complete decomposition of the finite volume
- Efficient for large scale
- Explicit angular-fourier mode dependence
- Matching the estimator

 GR effects only in continuous basis (<u>Yoo & Desjacques 2014</u>, <u>Semenzato et al. 2024</u>)

SPHERE^X ADDRESSES 3 CENTRAL QUESTIONS

...as stated in the NASA 2014 Science Plan

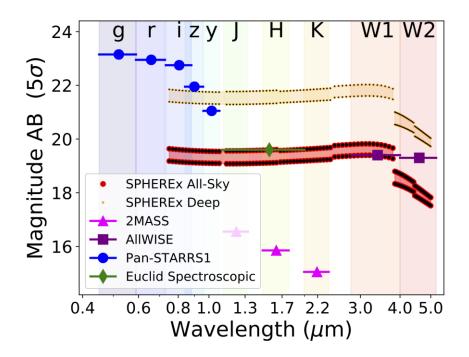
How Did the Universe Begin?

"Probe the origin and destiny of our universe, including the nature of black holes, dark energy, dark matter and gravity"

How Did Galaxies Begin?

"Explore the origin and evolution of the galaxies, stars and planets that make up our universe"

What are the Conditions for Life Outside the Solar System?


"Discover and study planets around other stars, and explore whether they could harbor life"

...While Creating a Unique All-Sky Spectral Survey

What Can YOU Do With the all-sky survey?

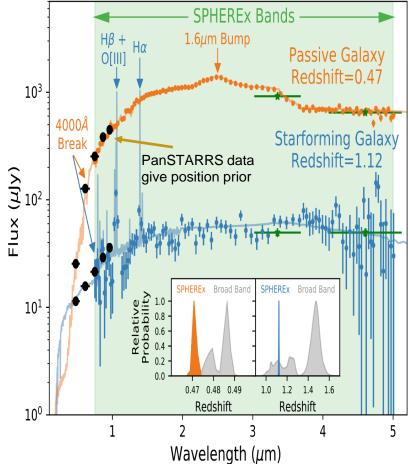
SPHERE^x Point Source Sensitivity

Data are rapidly released to the public

- Calibrated spectral images within 2 months of observation, updated following 2nd and 4th survey recalibration
- High-reliability catalog after 3rd survey
- Core science products at end of mission

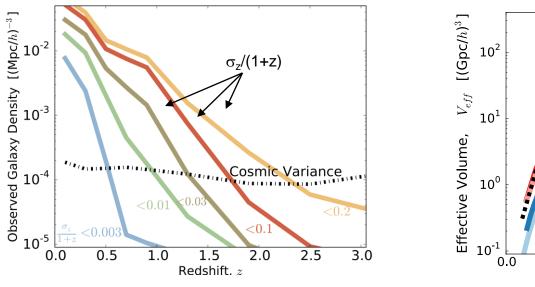
Users have access to data exploration, analysis, and visualization tools

- On-the-Fly Mosaics
- Photometry on Known Position
- Spectral Data Cube Extractor
- Variable Source Extractor
- Source Discovery

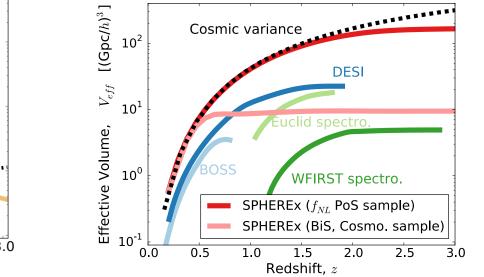

REDSHIFTS FROM LOW-RESOLUTION SPECTROSCOPY

We extract the spectra from *known* galaxy positions Controls blending and confusion

We compare each spectrum to a template library: For each galaxy: redshift, type and redshift error


Many self-consistency tests using SPHEREx data, spectral models, and external redshift catalogs

Detected galaxies> 1 billionGalaxies $\Delta z/1+z < 10 \%$ > 450 millionGalaxies $\Delta z/1+z < 0.3\%$ > 10 million



Catalog Split into Redshift Accuracy Bins

SPHERE^x Surveys Maximum Cosmic Volume

Survey Designed for local PNG

- Probe large spatial modes: wide redshift range, full sky, IR wavelengths, stable
- Large scale power from PS: large number of low-accuracy redshifts
- Modulation of fine-scale power from BS: fewer high-accuracy redshifts

- Systematics
 - SPHEREx is designed to minimize systematics (in space, stable gain)
 - However, galactic foregrounds (dust, star,...)
 - Crowding
 - Systematics in reference catalogues
 - Unknown systematics