Amplitude and Importance of Relativistic Contributions to the Galaxy Bispectrum

Samantha Rossiter

Phd student Department of Physics University of Turin

Relativistic Effects and Novel Observables in Cosmology University of Geneva July 2024

UNIVERSITÀ DI TORINO

Decoupling Local Primordial non-Gaussianity from Relativistic Effects in the Galaxy Bispectrum

Rossiter et al. (2024) - tomorrow!

Samantha Rossiter Phd student Department of Physics University of Turin

Relativistic Effects and Novel Observables in Cosmology University of Geneva July 2024

UNIVERSITÀ DI TORINO

Expert Guidance

Stefano Camera University of Turin

Chris Clarkson Queen Mary University of London

Roy Maartens University of the Western Cape

Background papers

Local primordial non-Gaussianity in the relativistic galaxy bispectrum

Roy Maartens^{1,2}, Sheean Jolicoeur¹, Obinna Umeh², Eline M. De Weerd³, Chris Clarkson^{3,1}

Detecting the relativistic galaxy bispectrum

arXiv:1911.02398

Roy Maartens^{1,2}, Sheean Jolicoeur¹, Obinna Umeh², Eline M. De Weerd³, Chris Clarkson^{3,1,4}, Stefano Camera^{5,6,1} arXiv:2011.13660

Contributions to the Galaxy Bispectrum

- The Universe is not Gaussian: Non-linear evolution of structures and gravitational dynamics, Primordial non-Gaussianity, etc.
- Require higher order statistics such as the Bispectrum

$$\langle \delta_g(\mathbf{k}_1) \delta_g(\mathbf{k}_2) \delta_g(\mathbf{k}_3) \rangle = (2\pi)^3 \mathbf{B}_g(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) \delta^D(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_2)$$

Relativistic effects and local primordial non-Gaussianity

- Source of non-Gaussianity in the observed galaxy distribution
- More accessible in the bispectrum than in the power spectrum long modes and short modes couple
- Imaginary terms don't become real when using a single tracer Smoking gun dipole

Relativistic Galaxy Bispectrum

$$B_{g}(\mathbf{k}_{123}) = \mathcal{K}^{(1)}(\mathbf{k}_{1}) \, \mathcal{K}^{(1)}(\mathbf{k}_{2}) \, \mathcal{K}^{(2)}(\mathbf{k}_{123}) \, P(\mathbf{k}_{1}) \, P(\mathbf{k}_{2}) + 2 \, \circlearrowright$$
$$\mathcal{K}^{(i)} = \mathcal{K}^{(i)}_{\mathrm{N}} + \mathcal{K}^{(i)}_{\mathrm{GR}}$$

UNIVERSITÀ DI TORINO

Monopole of the bispectrum for squeezed and equilateral triangles

Shows a significant difference at larger scales i.e small k

From Umeh et al 1610.03351

Galaxy Surveys

Roman - H α spectroscopic survey from the Wide Field Instrument (WFI)

- **DESI** Bright Galaxy Sample (BGS)
- **Euclid** H α sample from the Near Infrared Spectroscopic and Photometric (NISP) instrument

MegaMapper - Future ground based wide field spectroscopic instrument

Survey	Redshift range	Sky area [deg ²]
Roman	model 1 & 3: $0.5 \le z \le 2$	2000
DESI	$0 \le z \le 0.7$	14000
Euclid	model 1: $0.7 \le z \le 2$	15,000
	model 3: $0.9 \le z \le 1.8$	15 000
MegaMapper	$2 \le z \le 5$	20 000

Signal-to-noise Ratio

$$\left(\frac{S}{N}\right)_{GR}^2 = \sum_{k_a,\mu_1,\varphi} \frac{\left(B_g - B_N\right)\left(B_g - B_N\right)^*}{\operatorname{Var}[B_{gN}]}$$

Signal-to-noise Ratio

Marginal errors

- We want to see how precisely we can measure the local PNG and relativistic contributions
 - $\mathcal{K}^{(i)} = \mathcal{K}_{\mathrm{N}}^{(i)} + \mathcal{K}_{\mathrm{GR}}^{(i)} + \mathcal{K}_{\mathrm{nG}}^{(i)}$

Fisher matrix formalism:

$$F_{\alpha\beta} = \sum_{z,k_a,\mu_a,\varphi} \frac{\partial_{(\alpha}B_g \,\partial_{\beta)}B_g^*}{\operatorname{Var}[B_g, B_g]}$$

• From this we can get the marginal errors on our parameters

$$\sigma_{\alpha} = \sqrt{\left(\mathsf{F}^{-1}\right)_{\alpha\alpha}}$$

$$\theta = \{\epsilon_{\mathrm{GR}}^{(1)}, \epsilon_{\mathrm{GR}}^{(2)}, f_{\mathrm{NL}}\}$$

Marginal errors on $f_{\rm NL}$

Constraints on all parameters

Constraints on all parameters

Bias on parameters

$$\Delta \theta_{\alpha} = \sum_{\beta} \left(F^{\theta_{\rm GR} \theta_{\rm GR}} \right)_{\alpha\beta}^{-1} F_{\beta}^{\theta f_{\rm NL}} \, \delta f_{\rm NL} \, .$$

 $f_{\rm NL}$ Uncertainty on makes little difference to the observed value we get on the relativistic contributions

 Neglecting Relativistic
 contributions would impact our observed value of fnl significantly.

Bias on parameters

- The shift on the value of *f*_{NL} with error bars in the Newtonian regime.
- We have included the measured fnl with error bars as from Planck 2018 as a reference (greyed out area).

Cross Correlation Bispectrum \implies Multi-tracer \implies P + B

 $B^{XXY}(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}) = \frac{1}{3} \left\{ \mathcal{D}_{B} \left[\left\{ \mathcal{K}_{1}^{X}(\mathbf{k}_{1}) \mathcal{K}_{1}^{Y}(\mathbf{k}_{2}) + \mathcal{K}_{1}^{Y}(\mathbf{k}_{1}) \mathcal{K}_{1}^{X}(\mathbf{k}_{2}) \right\} \mathcal{K}_{2}^{X}(\mathbf{k}_{1}, \mathbf{k}_{2}) + \mathcal{K}_{1}^{X}(\mathbf{k}_{1}) \mathcal{K}_{1}^{X}(\mathbf{k}_{2}) \mathcal{K}_{2}^{Y}(\mathbf{k}_{1}, \mathbf{k}_{2}) \right] P(\mathbf{k}_{1}) P(\mathbf{k}_{2}) + 2\mathbf{k}\text{-perm} \right\},$

$$B^{XYY}(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}) = \frac{1}{3} \left\{ \mathcal{D}_{B} \left[\left\{ \mathcal{K}_{1}^{X}(\mathbf{k}_{1}) \,\mathcal{K}_{1}^{Y}(\mathbf{k}_{2}) + \mathcal{K}_{1}^{Y}(\mathbf{k}_{1}) \,\mathcal{K}_{1}^{X}(\mathbf{k}_{2}) \right\} \mathcal{K}_{2}^{Y}(\mathbf{k}_{1}, \mathbf{k}_{2}) \right. \\ \left. + \mathcal{K}_{1}^{Y}(\mathbf{k}_{1}) \,\mathcal{K}_{1}^{Y}(\mathbf{k}_{2}) \,\mathcal{K}_{2}^{X}(\mathbf{k}_{1}, \mathbf{k}_{2}) \right] P(\mathbf{k}_{1}) \,P(\mathbf{k}_{2}) + 2\mathbf{k}\text{-perm} \left. \right\},$$

Multi-tracer power spectra and bispectra: Formalism

arXiv:2305.04028

Dionysios Karagiannis,¹ Roy Maartens,^{1,2,3} José Fonseca,^{4,5,1} Stefano Camera,^{6,7,8,1} Chris Clarkson^{9,1}

- Relativistic effects couple with local $\Pr_{f_{\rm NL}}$ on large scales
- Without including relativistic effects, cannot be measured accurately
- The evolution bias leaves a big imprint on the detection of relativistic effects
- The modelling of the luminosity functions of surveys is crucial for decoupling
- Working with cross-correlations of different samples of the same survey may allow us to reduce the degeneracies within even the least promising surveys

UNIVERSITÀ DI TORINO

Thank you. Any questions?

UNIVERSITÀ DI TORINO

Backup slides

Marginal errors

Survey	$\sigma(\epsilon_{ m GR}^{(1)})$	$\sigma(\epsilon_{ m GR}^{(2)})$	$\sigma(f_{ m NL})$
Roman model 1	0.290	0.579	4.007
Roman model 3	0.255	0.502	4.344
DESI	0.366	0.627	20.123
Euclid model 1	0.123	0.233	1.234
Euclid model 3	0.141	0.256	2.458
MegaMapper	0.116	0.161	0.424

Signal-to-noise Redone

- Discontinuity in luminosity function causes steep drop in signal at $z \sim 1.3$
- Check against an improved luminosity model with updated Euclid specs

