

Bartjan van Tent

Jorge Noreña

Cornelius Rampf

Enea Di Dio

Relativistic matter bispectrum of cosmic structure

Thomas Montandon

Montandon et al (2404.02783) Montandon et al (2212.06799) Adamek et al (2110.11249)

Julian Adamek

Clément Stahl

European Research Council

Established by the European Commission

• Why?

- Why?
 - LCDM says it
 - it is annoying for inflation

 $B(t,k_1,k_2,k_3) = T^{(1)}(k_1)T^{(1)}(k_2)T^{(1)}(k_3)B_{\mathcal{R}}(k_1,k_2,k_3) + 2T^{(1)}(k_1)T^{(1)}(k_2)T^{(2)}(k_1,k_2,k)P_{\mathcal{R}}(k_1)P_{\mathcal{R}}(k_2) + \text{perm.}$

GR and Radiation effects are degenerate in time and in momentum space with PNG!

 $+ 2\partial_{\theta} \left[-\psi_s^I - \frac{1}{H_s} (\partial_{\eta} \psi_s^I + \partial_{\tau} \psi_{0s}) \right] \int_{\eta_s}^{\eta_s} d\eta' \gamma_0^{ab} \partial_{\theta} \int_{\eta'}^{\eta_s} d\eta' \varphi^I (\eta'') \\ - 2a \psi_{\perp,s}^{a} \partial_{\theta} \int_{\eta_s}^{\eta_s} d\eta' \psi^I (\eta') + \frac{4}{r_s} \int_{\eta_s}^{\eta_s} d\eta' \left[\psi^I (\eta') \left(-\psi^I (\eta') - 2 \int_{\eta'}^{\eta_s} d\eta'' \partial_{\eta'} \psi^I (\eta'') \right) \right. \\ \left. + \gamma_0^{ab} \partial_{\theta} \left(\int_{\eta'}^{\eta_s} d\eta' \psi^I (\eta') \right) \partial_{\theta} \left(\int_{\eta'}^{\eta'} d\eta' \psi^I (\eta'') \right) \right] + 4 \partial_{\theta} \psi_s^I \int_{\eta_s}^{\eta_s} d\eta' \gamma_0^{ab} \partial_{\theta} \int_{\eta'}^{\eta_s} d\eta' \psi^I (\eta') \\ \left. - \frac{8}{2} \left[\int_{\eta'}^{\eta_s} d_{\eta'} \psi^I (\eta' \int_{\eta'}^{\eta_s} d\eta' \phi^I (\eta') \right] \right]$

 $\gamma_0^{ab} \partial_b \psi^I(\eta)$

 $\frac{1}{2}\Delta_2\psi^I(\eta')$

- Why?
 - LCDM says it
 - it is annoying
- How?
 - Computation

$$\begin{split} &+\frac{1}{\mathcal{H}_{s}}\partial_{\eta}\psi_{s}^{A}\left[-\left(\psi_{s}^{I}-\psi_{s}^{A}\right)-2\int_{\eta_{s}}^{\eta_{o}}d\eta'\psi^{I}(\eta')\right]+\frac{1}{\mathcal{H}_{s}}\psi_{s}^{A}\partial_{\eta}\psi_{s}^{J}-\\ &+\left[-\frac{1}{\mathcal{H}_{s}^{2}}\left(\partial_{\eta}^{2}\psi_{s}^{A}-\partial_{r}^{2}\psi_{s}^{A}-\partial_{\eta}\partial_{r}\psi_{s}^{A}\right)+\left(5+3\frac{\mathcal{H}_{s}'}{\mathcal{H}_{s}^{2}}+\frac{2}{\mathcal{H}_{s}r_{s}}\right)\frac{1}{\mathcal{H}_{s}}\partial_{\eta}\psi_{s}^{A}-\frac{3}{\mathcal{H}_{s}}\partial_{\tau}\psi_{s}^{A}\right.\\ &-\left(6+4\frac{\mathcal{H}_{s}'}{\mathcal{H}_{s}^{2}}\right)\psi_{s}^{A}\right]v_{||s}+\left[-\frac{1}{\mathcal{H}_{s}^{2}}\partial_{r}^{2}v_{||s}-\left(8+3\frac{\mathcal{H}_{s}'}{\mathcal{H}_{s}^{2}}\right)\frac{1}{\mathcal{H}_{s}}\partial_{\eta}v_{s}^{A}-\frac{2}{\mathcal{H}_{s}^{2}}\partial_{\eta}\psi_{s}^{A}\partial_{r}v_{||s}\right.\\ &+\frac{1}{\mathcal{H}_{s}}av_{\perp s}^{a}\partial_{a}\psi_{s}^{A}+\left[-\frac{2}{\mathcal{H}_{s}}\partial_{\eta}\psi_{s}^{A}+\left(10+2\frac{\mathcal{H}_{s}}{\mathcal{H}_{s}^{2}}\right)\psi_{s}^{A}\right]\frac{1}{r_{s}}\int_{\eta_{s}}^{\eta_{o}}d\eta'\frac{\eta'-\eta_{s}}{\eta_{o}-\eta'}\Delta_{2}\psi^{I}\left(\eta'\right)\\ &+\frac{2}{\mathcal{H}_{s}}\partial_{\tau}\psi_{s}^{A}\int^{\eta_{o}}d\eta'\Delta_{2}\psi^{I}\left(\eta'\right)+\left\{\left[-\frac{2}{\mathcal{H}_{s}}\partial_{\eta}\psi_{s}^{A}+2\left(4+\frac{\mathcal{H}_{s}'}{\mathcal{H}_{s}}\right)\psi_{s}^{A}\right]\frac{1}{1}\right] \\ \end{split}$$

$$\begin{split} &+\frac{4}{H_{h}r_{e}}\psi_{i}^{d}-\frac{2}{H_{h}r_{e}}\int_{0}^{\infty}d\theta A_{2}\psi_{i}^{d}\left(\eta\right)\left|\eta_{h}+\left[2\left(2+\frac{H_{h}^{d}}{H_{h}r_{e}}\right)\partial_{i}\eta_{h}\right)\partial_{i}\eta_{h}\right.\\ &+\frac{2}{H_{h}}\partial_{i}\eta_{h}^{d}\right]\int_{0}^{\infty}d\theta \psi_{i}^{d}\left(\eta\right)+\left[\frac{2}{H_{h}}\left(5+3\frac{H_{h}^{2}}{H_{h}^{2}}\right)\partial_{i}\eta_{h}+\frac{2}{H_{h}^{2}}\partial_{i}\eta_{h}\right)\int_{0}^{\infty}d\theta \partial_{i}\psi_{i}^{d}\left(\eta\right)\\ &+\left(6+3\frac{H_{h}^{2}}{H_{h}^{2}}\partial_{i}\eta_{h}-\frac{H_{h}^{2}}{\eta_{h}}\partial_{i}\eta_{h}^{d}\psi_{i}^{d}\left(\eta\right)+\frac{1}{H_{h}^{2}}\partial_{i}\psi_{h}^{d}\partial_{i}\psi_{i}^{d}\left(\eta\right)\\ &+\left(6+3\frac{H_{h}^{2}}{H_{h}^{2}}\partial_{i}\eta_{h}^{d}-\frac{H_{h}^{2}}{\eta_{h}}\partial_{i}\psi_{i}^{d}\eta_{h}^{d}\psi_{i}^{d}\left(\eta\right)\right)^{2}+\left\{\left[2\left(-2-\frac{H_{h}^{2}}{H_{h}^{2}}\right)\phi_{i}^{d}\right]\\ &+\left(6-3\frac{H_{h}^{2}}{H_{h}^{2}}\partial_{i}\phi_{i}^{d}\psi_{i}^{d}\left(\eta\right)-\frac{2}{H_{h}}\partial_{i}\phi_{i}^{d}\left(\eta\right)^{2}\right)^{2}+\left\{\left[2\left(-2-\frac{H_{h}^{2}}{H_{h}^{2}}\right)\phi_{i}^{d}\right]\\ &+4\left(-2-\frac{H_{h}^{2}}{H_{h}^{2}}\right)\int_{0}^{\infty}d\eta_{i}^{d}\psi_{i}^{d}\left(\eta\right)-\frac{2}{H_{h}}\partial_{i}\psi_{i}^{d}\left(\frac{1}{r_{h}}+2\left(-2-\frac{H_{h}^{2}}{H_{h}^{2}}\right)\partial_{i}\phi_{i}^{d}\partial_{i}\phi_{i}^{d}\left(\eta\right)\right)\\ &+2\left(-2-\frac{H_{h}^{2}}{H_{h}^{2}}\right)\partial_{i}\psi_{i}^{d}\left(-1-\frac{H_{h}^{2}}{H_{h}^{2}}\right)\partial_{i}\psi_{i}^{d}-\frac{1}{H_{h}^{2}}\partial_{i}\phi_{i}\psi_{i}^{d}\left(-2\int_{0}^{\infty}d\eta_{i}^{d}\psi_{i}^{d}\left(\eta\right)\right)\\ &+\left[\frac{3}{H_{h}^{2}}\left(-1-\frac{H_{h}^{2}}{H_{h}^{2}}-\frac{2}{3}\frac{1}{H_{h}r_{h}}\right)\partial_{i}\psi_{i}^{d}+\frac{1}{H_{h}^{2}}\partial_{i}\psi_{i}^{d}-\left(-2-\frac{H_{h}^{2}}{H_{h}^{2}}\right)\psi_{i}^{d}\right)\right. \end{aligned}$$

 $+\left(2-3\frac{\mathcal{H}_{s}'}{\mathcal{H}_{s}'}-\frac{2}{\mathcal{H}_{s}r_{s}}\right)\frac{1}{\mathcal{H}_{s}}\partial_{0}\psi_{s}^{\mathcal{A}}+\left(4-3\frac{\mathcal{H}_{s}'}{\mathcal{H}_{s}^{2}}-\frac{2}{\mathcal{H}_{s}r_{s}}\right)\frac{1}{\mathcal{H}_{s}}\partial_{0}\psi_{s}^{\mathcal{I}}-\left(7+\frac{\mathcal{H}_{s}'}{\mathcal{H}_{s}^{2}}\right)\psi_{s}^{\mathcal{I}}$

$$\begin{split} &+6\,\partial_a\psi_s^i\int_{\eta_c}^{\eta_c}d\eta'\gamma_0^{ab}\partial_b\int_{\eta'}^{\eta_c}d\eta'\eta_c^{ab}\langle\eta'^{-1}(\eta')+\frac{2}{\mathcal{H}_s}\partial_a\psi_s^i\gamma_0^{ab}\partial_b\int_{\eta_c}^{\eta_c}d\eta'\psi^I(\eta')\\ &-\frac{2}{\mathcal{H}_s}\partial_a\left(\partial_i\psi_s^i\right)\int_{\eta_c}^{\eta_c}d\eta'\gamma_0^{ab}\partial_b\int_{\eta'}^{\eta_c}d\eta'\psi^I(\eta')+\frac{8}{r_s}\int_{\eta_c}^{\eta_c}d\eta'\left(\psi^I\psi^A\right)(\eta')\\ &-\frac{4}{r_s}\int_{\eta_c}^{\eta_c}d\eta'\frac{\eta'-\eta_s}{\eta_c-\eta'}\Delta_2\left(\psi^I\psi^A\right)(\eta')+\left[\left(-\frac{2}{\mathcal{H}_sr_s}-\frac{\mathcal{H}_s'}{\mathcal{H}_s^2}\right)\psi_s^i+\frac{1}{\mathcal{H}_s}\partial_\eta\psi_s^A\right]\delta_{\mu}^{[1)}\\ &+\left[\frac{1}{\rho}\partial_q\left(\bar{\rho}\,\delta_{\mu}^{(1)}\right)-\partial_s\delta_{\mu}^{(1)}\right]\frac{1}{\mathcal{H}_s}\psi_s^i. \end{split} \tag{4}$$

- Why?
 - LCDM says it
 - it is annoying for inflation
- How?
 - Computation is too hard...
 - SIMULATION!

Inflaton ϕ

Inflaton ϕ

Results

- Redshift bins
- GR up to \mathcal{H}^4/k^4
- Radiation up to \mathcal{H}^4/k^4
- Projection effects up to \mathcal{H}/k

 $egin{aligned} b_{\ell_1\ell_2\ell_3}^{r_1r_2r_3} &= rac{8}{\pi^3}\int dr_1' dr_2' dr_3' W(r_1,r_1') W(r_2,r_2') W(r_3,r_3') \ \int dk_1 dk_2 dk_3 d\chi (k_1k_2k_3\chi)^2 B^{r_1'r_2'r_3'}(k_1,k_2,k_3) \ j_{\ell_1}(k_1r_1') j_{\ell_2}(k_2r_2') j_{\ell_3}(k_3r_3') j_{\ell_1}(k_1\chi) j_{\ell_2}(k_2\chi) j_{\ell_3}(k_3\chi) \end{aligned}$

- Redshift bins
- GR up to \mathcal{H}^4/k^4
- Radiation up to \mathcal{H}^4/k^4
- Projection effects up to \mathcal{H}/k

 $egin{aligned} b_{\ell_1\ell_2\ell_3}^{r_1r_2r_3} &= rac{8}{\pi^3}\int dr_1' dr_2' dr_3' W(r_1,r_1') W(r_2,r_2') W(r_3,r_3') \ \int dk_1 dk_2 dk_3 d\chi (k_1k_2k_3\chi)^2 B^{r_1'r_2'r_3'}(k_1,k_2,k_3) \ j_{\ell_1}(k_1r_1') j_{\ell_2}(k_2r_2') j_{\ell_3}(k_3r_3') j_{\ell_1}(k_1\chi) j_{\ell_2}(k_2\chi) j_{\ell_3}(k_3\chi) \end{aligned}$

$$b_{\ell_{1}\ell_{2}\ell_{3}}^{\hat{z}_{1}\hat{z}_{2}\hat{z}_{3}} = b_{\ell_{1}\ell_{2}\ell_{3}}^{\delta_{2}} + b_{\ell_{1}\ell_{2}\ell_{3}}^{\partial_{r}^{2}v_{1}} + b_{\ell_{1}\ell_{2}\ell_{3}}^{\partial_{r}v_{1}\partial_{r}^{3}v_{1}} + b_{\ell_{1}\ell_{2}\ell_{3}}^{\partial_{r}v_{1}\partial_{r}\delta_{1}} + b_{\ell_{1}\ell_{2}\ell_{3}}^{\partial_{r}v_{1}\partial$$

- Redshift bins
- GR up to \mathcal{H}^4/k^4
- Radiation up to \mathcal{H}^4/k^4
- Projection effects up to \mathcal{H}/k

 $egin{aligned} b_{\ell_1\ell_2\ell_3}^{r_1r_2r_3} &= rac{8}{\pi^3}\int dr_1' dr_2' dr_3' W(r_1,r_1') W(r_2,r_2') W(r_3,r_3') \ &\int dk_1 dk_2 dk_3 d\chi (k_1k_2k_3\chi)^2 B^{r_1'r_2'r_3'}(k_1,k_2,k_3) \ &j_{\ell_1}(k_1r_1') j_{\ell_2}(k_2r_2') j_{\ell_3}(k_3r_3') j_{\ell_1}(k_1\chi) j_{\ell_2}(k_2\chi) j_{\ell_3}(k_3\chi) \end{aligned}$

$$b_{\ell_{1}\ell_{2}\ell_{3}}^{\hat{z}_{1}\hat{z}_{2}\hat{z}_{3}} = b_{\ell_{1}\ell_{2}\ell_{3}}^{\delta_{2}} + b_{\ell_{1}\ell_{2}\ell_{3}}^{\partial_{r}^{2}v_{1}} + b_{\ell_{1}\ell_{2}\ell_{3}}^{\partial_{r}v_{1}\partial_{r}^{3}v_{1}} + b_{\ell_{1}\ell_{2}\ell_{3}}^{\partial_{r}v_{1}\partial_{r}\delta_{1}} + b_{\ell_{1}\ell_{2}\ell_{3}}^{\partial_{r}v_{1}\partial$$

$$b_{\ell_{1}\ell_{2}\ell_{3}}^{\delta_{2}} = 2 \sum_{mn} \int d\chi C_{\ell_{2}}^{(n,0,0)}(\chi) C_{\ell_{3}}^{(m,0,0)}(\chi) \left(\chi^{2} \int \frac{dr_{1}}{r_{1}^{2}} D^{2}(r_{1}) W(r_{1}) \left[f_{nm}^{(-4)} I_{\ell_{1}}(-1,r_{1},\chi) + f_{nm}^{(-2)} A_{\ell_{1}}(r_{1},\chi) \right. \left. + \sum_{p} c_{p} \left(f_{nm}^{(-4,R)} I_{\ell_{1}}(b+ip\eta-1,r_{1},\chi) + f_{nm}^{(-2,R)} I_{\ell_{1}}(b+ip\eta+1,r_{1},\chi) \right) \right] \left. + f_{nm}^{(0)} D^{2}(\chi) W(\chi) + \mathcal{D}_{\ell_{1}} \left[f_{nm}^{(2)} D^{2}(\chi) W(\chi) \right] + \mathcal{D}_{\ell_{1}}^{2} \left[f_{nm}^{(4)} D^{2}(\chi) W(\chi) \right] \right).$$
(3.14)

- Redshift bins
- GR up to \mathcal{H}^4/k^4
- Radiation up to \mathcal{H}^4/k^4
- Projection effects up to \mathcal{H}/k

- Redshift bins
- GR up to \mathcal{H}^4/k^4
- Radiation up to \mathcal{H}^4/k^4
- Projection effects up to \mathcal{H}/k

$$b_{ ext{sim}}^{ ext{GR}} \stackrel{?}{=} b_{ ext{th}}^{ ext{GR}} \quad ext{and} \quad b_{ ext{sim}}^{ ext{Rad}} \stackrel{?}{=} b_{ ext{th}}^{ ext{Rad}}$$

- Redshift bins
- GR up to \mathcal{H}^4/k^4
- Radiation up to \mathcal{H}^4/k^4
- Projection effects up to \mathcal{H}/k

$$b_{ ext{sim}}^{ ext{GR}} \stackrel{?}{=} b_{ ext{th}}^{ ext{GR}} \quad ext{and} \quad b_{ ext{sim}}^{ ext{Rad}} \stackrel{?}{=} b_{ ext{th}}^{ ext{Rad}}$$

Come back soon for the results, we are on it

GR effects are cool

- We have an accurate numerical model thanks to simulation
 - Theory is hard as expected

Thank you !

