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1 Introduction

The DeepThought a Project is an interdis- o~ n |
ciplinary research collaboration exploring oA |
the likelihood of life in our cosmos. Trea-
ting the cosmic star formation rate (SFR) ,
as a proxy [6], this summer project inves- 7, |
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tigated a novel method of compressing .,
multivariate data in order to arrive at a
notion of equivalence of universes with
different cosmological parameters.

Figure 1: History of the normalized
probabilities for star, planet and life
formation in our cosmology [6]

2 Computational Method

Considering the statistical playground of a “multiverse”, a recent
review [1] constrained the habitable ranges of numerous cosmo-
logical parameters (CPs). In this high-dimensional space, we are
interested in the “eigenvectors” of multiple-parameter variation.
We modify the concept of an autoencoder [3], encoding an input to
a low-dimensional representation, f(x) — z, and hence decoding
an output, g(z) — X'

—> Encoder —>E—> Decoder —>

Figure 2: The concept of autoencoding, reproduced from https://blog.keras.io/building-autoencoders-in-keras.html

The concept was further developed to a generative network known
as a variational autoencoder (VAE) [4] with the key features:

1.the encoder maps to a distribution in latent space
f(x) > p,0° st z~N|u,0° and g(z) — X

2.the latent variables are stochastically sampled as
Z=p+0 e with ¢~ N(0,1)

3.learning is regularized by the KL-divergence associated to the
latent distribution

Altogether, the input is compressed to a low-dimensional disen-
tangled latent representation.

Treating the latent distribution as a multivariate diagonal Gaussian,

one obtains the succinct loss function [4]

L=TF(x—f(g(x))?+ gzi 1 +logo — i —o7), (1)

where / ranges over the latent variables and 5 € R. controls the
disentanglement pressure. [2]
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Figure 3: Scheme of the modified VAE-architecture developed and applied in this project

At this point we modify the architecture: instead of demanding
equality of the reconstructed CPs, we compare the corresponding
SFRs. Note that in order to circumvent time-consuming simulations
In every training epoch, a second network is trained for mapping
reconstructed CPs to SFRs; it is called within the VAE.

3 Data and Learning Results

While the project will eventually analyze multiversal SFR-
simulations, the summer project aimed at developing the neural
network architecture. For this purpose, we made use of an analyti-
cal toy model [5] fitting normalized SFRs dependent on 2 CPs,
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with fn(2), fui(2), w(z) being functions of the redshift z, and we
introduced an additional parameter controlling the SFR-amplitude.
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Figure 4: Having trained 7 input CPs to 5 latent variables, the SFRs obtained upon variation of the z; are shown. The
colour scale indicates regularly spaced z; € p; & 20, fixing the other z; = i respectively

Applying this toy model, an exemplary compression of 7 CPs (of
which accordingly 3 are relevant for the SFR) to a 5-dimensional la-
tent representation with 8 = 1 was performed. Inspecting Fig. 4 and
the correlation of latent variables over all datapoints, it is apparent
that the network succeeded at learning disentangled features while
“switching off” the remaining variables.

4 Conclusion

Having successfully built the modified VAE-architecture, it will be
applied to multiversal SFR-simulations in future research. Here, the
main challenges for learning analysis are:

1. mathematically formalizing the learned parameter equivalence
2.assigning statistical uncertainties

Equipped with these, one can explore new avenues for calculating
the likelihood of life in the multiverse.
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