

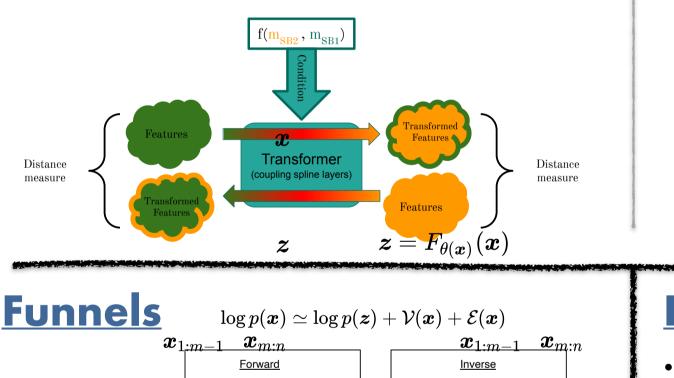
Draw the Curtains, Funnel, DREAM

- Al Physics Day -

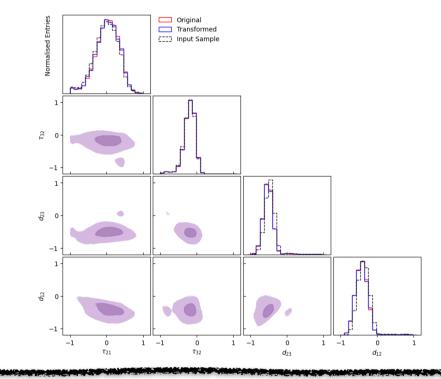
CURTAINs

Anomaly Detection

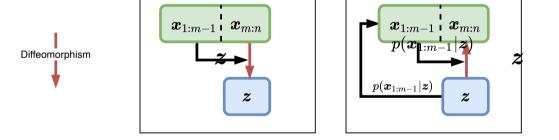
- In high energy physics we are looking for a tiny signal in an overwhelming background.
- We want to develop **model independent** methods for searching for new physics.
- We can assume that new resonances are localised in some feature.
- How can we do a model independent search using this simple assumption?


Bump Hunts

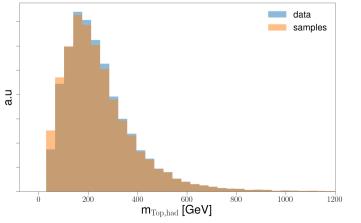
- Need background estimate in the Signal Region (SR).
- Extrapolate from the sidebands (SB).
- Look for a bump!
- Need additional observables to increase sensitivity.
- How to extend interpolation?


Method

- Transform data from the sidebands into the signal region.
- Transformed side bands provide a background template.
- Train a classifier to separate signal region samples from background template.
- Training on mixtures of samples results in the optimal classifier.

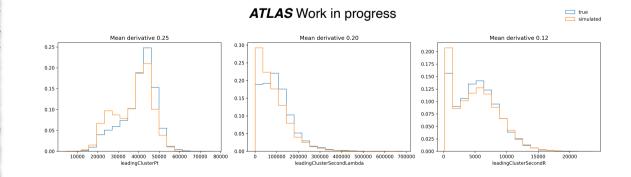

Results

Transformed samples from both side bands are **indistinguishable** from signal region samples


DREAM

How to automatically validate high dimensional simulations?

$$\mathcal{V}(oldsymbol{x}) = \log |\det(J_{ heta}(oldsymbol{x}_{m:n}))| + \log p(oldsymbol{x}_{1:m-1}|oldsymbol{z}) \qquad \qquad \mathcal{E} = 0$$


- Unlike auto encoders, exact likelihoods can be calculated.
- Unlike normalising flows, the data dimension can be reduced.
- Strongly correlated distributions such as those in this $t\bar{t}$ sample can be learned.

This method allows likelihood methods to scale to large datasets efficiently.

UNIVERSITÉ DE GENÈVE

- Many variables of interest, different approaches, skewed distributions, low statistics... Difficult to validate!
- Density Ratio Estimation for Automatic Monitoring uses a classifier to separate simulated samples from true samples.

The derivatives of the classifier can be used to order the features.

Sample	AUC	Model
Pions 262 GeV 1.5η	0.527	FCSGAN
	0.538	FastCaloGANv1
	0.540	FastCaloGAN
	0.602	FCS

The classifiers ability to separate (AUC) **scores** the model. More separation = worse modelling.

<u>Samuel Kleinf</u> <u>samuel.klein@unige.ch</u> Tobias Golling, Slava Voloshynovskiy, Johnny Raine, Sebastian Pina-Otey, Debajyoti Sengupta 03.11.2021