Solving high multiplicity final states

using Graph Neural Networks
- Physics Application of Al Day -
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e Many final states in the ATLAS experiment have multiple
of the same objects in the final state
e Assigning the final state particles to their respective
mother particle has many advantages
o Kinematics of the mother particles

o Background reduction = {iue i

e Ttbar pairs can lead Wt 4.
to up to six jets with 3 9.
four intermediate t .
particles

e Different methods gor
already exist { w- %
o KLFitter [1] 4 b
o SPA Net [2] b

Symmetric losses

e Represent final state particles as point cloud
e Insert helper nodes as intermediate particles
o Can use these nodes to regress towards true values
of these particles
o More information should lead to better performance
e Compared to fully connected graph, O(N) edges
instead of N(N-1) with N final state particles
e Building Feynman diagram backwards
e Can generalize this approach to any decay chain with
any final state particles
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Network structure

e Only considering Ws for simplicity

e Can't distinguish between the two Ws with only the jets

e \We need an order in the network and the predictions
for technical reasons but the network could swap the
order

e Make sure that we get the best permutation of the
order of the Ws by using a symmetric loss function
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Proof of concept and first results
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e First tests using only Ws
e As proof of concept use true W values as W nodes
e Very good separation of true jet-W edges and false

edges
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Whole network up to Ws

e Instead of standard ATLAS coordinates (pT, eta, phi)
uses cartesian coordinates (px, py, pz) to avoid
Issues with periodic phi

e Fairly small network already achieves good

regression and edge classification results
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