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Coalescing Binary 
Systems CBC
✔ Black hole – black hole
✔ Neutron star – neutron 

star
•  BH-NS
• Analytical waveform 

Transient‘Burst’Sources
• core collapse supernovae
• cosmic strings
• unmodeled waveform

Cosmic GW 
Background

• residue of the Big Bang,
•  stochastic, incoherent 
background

Continuous Sources
• Spinning neutron stars
• monotone waveform
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GW astrophysical sources

Do we know their Waveforms?



● Time series sequences… noisy 
time series with low amplitude 
GW signal buried in
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GW detector data



How we detect transient 
signals: modeled search 
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Matched-filter

CBC search



How we detect transient 
signals: un-modeled search 
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● Strategy: look for excess power 
in single detector or 
coherent/coincident in network 
data

● Example cWB 
(https://gwburst.gitlab.io/)

○ Time-domain data 
preprocessed

○ Wavelet decompostion
○ Event reconstruction

Phys. Rev. D 93, 042004 (2016)
Class.Quant.Grav.25:114029,2008

Burst search

https://gwburst.gitlab.io/


● A lot of noise and few GW signals

● Low SNR signals

● Many transient noise disturbances

● Not stationary/non linear noise
● Many monitoring auxiliary channels
● Computational and timing efficiency

Why AI for Gravitational Wave data?



I. Fiori courtesy

Non linear, not stationary noise



https://www.zooniverse.org/projects/zooniverse/gravity-spy Gravity Spy, Zevin et al (2017)

Glitches



Data conditioning

•Identify Non linear noise coupling

•Use Deep Learning to remove noise

•Extract useful features to clean data

Signal Detection/Classification/PE

•A lot of fake signals due to noise

•Fast alert system

•Manage parameter estimation (See 
following talks)

How machine learning can help



● Input: Time series

● Pre-processing analysis

● Change of domain space: Time-Frequency projections

● Different Machine Learning models

How to deal with data?



Not Whitened

Whitened

Preprocessing-Whitening

On-line power spectra 
identification and whitening for 
the noise in interferometric 
gravitational wave detectors
 DOI  10.1088/0264-9381/18/9/309
 Classical and Quantum Gravity



Abbott et al. (2017) 

Glitch mitigation

GW 170817Ligo Livingston

Are we able to clean data from glitch?

https://doi.org/10.1103/PhysRevLett.119.161101


Time series or Images?



Machine learning workflow



No label 
for the 
data

Unsupervised

Labeled 
training 
data 

Supervised

Few labeled 
data
 

Semi-supervised

Reinforcement learning

Machine learning models. Which one ??



AI GW application

Some examples from my 
group, but many more in LVK 
callaboration…

Noise Transient signal 
classification

GW signal classification 
(CBC or CCSN)

Stochastic background 
detection



Why Image-based 
classification

❖ Transient Noise classification and 
Images as input data

Simulated and real data



www.gravityspy.org

Citizen scientists contribute to classify glitches
 
More details in  Zevin+17  10.1088/1361-6382/aa5cea
 

Glitch & Citizen science: GravitySpy

“whistle” glitch

Elen Cuoco

https://doi.org/10.1016/j.ins.2018.02.068

http://www.gravityspy.org/
https://arxiv.org/ct?url=https://dx.doi.org/10.1088/1361-6382/aa5cea&v=e08367bb
https://doi.org/10.1016/j.ins.2018.02.068


To show the glitch time-series 
here we don’t show the noise 
contribution
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How we started…
Data simulation: signal families + Detector colored Noise 

Razzano M., Cuoco E.  CQG-104381.R3

Waveform

Gaussian

Sine-Gaussian

Ring-Down

Chirp-like

Scattered-like

Whistle-like

NOISE (random)



Spectrogram for each image 

2-seconds time window to highlight 
fatures in long glitches

Data is whitened

Optional contrast stretch
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Building the images

Simulations now available  on FigShare

Razzano, Massimiliano; Cuoco, Elena (2018): Simulated image data for testing 
machine learning classification of noise transients in gravitational wave detectors 
(Razzano & Cuoco 2018). figshare. Collection. 
https://doi.org/10.6084/m9.figshare.c.4254017.v1

https://doi.org/10.6084/m9.figshare.c.4254017.v1


2-D CNN

Spectrogram images

9/13
Alberto Iess courtesy

Deep learning: Convolutional Neural Network



Input GW data 
❖ Image processing
❖ Time series whitening
❖ Image creation from time series (FFT spectrograms)
❖ Image equalization & contrast enhancement

Classification
● A probability for each class, take the max
● Add a NOISE class to crosscheck glitch detection

Network layout
● Tested various networks, including a 4-block layers

Run on GPU Nvidia GeForce GTX 780 
● 2.8k cores, 3 Gb RAM) 
● Developed in Python + CUDA-optimized libraries
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Pipeline structure

M. Razzano courtesy



Normalized Confusion Matrix

Deep CNN
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Classification accuracy

Razzano M., Cuoco E.  CQG-104381.R3



Glitch name # in H1 # in L1

Air compressor 55 3

Blip 1495 374

Chirp 34 32

Extremely Loud 266 188

Helix 3 276

Koi fish 580 250

Light Modulation 568 5

Low_frequency_burst 184 473

Low_frequency_lines 82 371

No_Glitch 117 64

None_of_the_above 57 31

Paired doves 27 -

Power_line 274 179

Repeating blips 249 36

Scattered_light 393 66

Scratchy 95 259

Tomte 70 46

Violin_mode 179 -

Wandering_line 44 -

Whistle 2 303

Dataset from GravitySpy images
Application Test on Real data: O1 run
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Full CNN stack

Consistent with 
Zevin+2017

Elena Cuoco

Results



GW Astrophysical signal classification
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Compact Binary Coalescences

Credit
LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet)
 
Matched filter modeled 
searches  Unmodeled searches



• Waveform depends on progenitor star
• Different emission mechanisms (Proto-neutron 

star oscillation, Standing Accretion Shock 
Instability (SASI),..)

• Largely Stochastic
• Best waveform models from computationally 

expensive 3D simulations
• Different simulation models
• Rare (~100 yrs in Milky Way)

Need an alternative to matched filter approach
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Ott et al. (2017) 

GWs from Core Collapse Supernovae



• Andresen s11: Low amplitude, non-exploding, peak emission at 
lower frequencies

• Radice s13: Non-exploding, lower amplitudes
 

• Radice s25: Late explosion time, standing accretion shock 
instability (SASI), high peak frequency

• Powell s18: High peak frequency, exploding model

• Powell He3.5: ultra-stripped helium star, high peak frequency, 
exploding model

Core-Collapse Supernovae models
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Iess, Cuoco, Morawski, Powell, 
https://doi.org/10.1088/2632-2153/ab7d31

https://doi.org/10.1088/2632-2153/ab7d31


SINE GAUSSIAN & SCATTERED LIGHT 
GLITCHES

• Distances: 
VO3 0.01 kpc to 10 kpc
ET 0.1 kpc to 1000 kpc 

• Random sky localization
• Large SNR range

Schutz (2011)

BACKGROUND STRAIN :  simulated data sampled at 
4096 Hz built from VO3 and ET projected sensitivities 

5/13
Alberto Iess courtesy

MDC and CCSN GW simulations



STRAIN WAVEFORMS

+ RESAMPLING, 
FILTERING

MACHINE-LEARNING 
CLASSIFIER

GW SIGNAL TYPE

GLITCH NOISE TYPE
TRAINING

WHITENING & TRIGGER 
GENERATION  

(WDF)

Alberto Iess courtesy

Pipeline Workflow
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WDF (Cuoco et al. 2015)

• Whitening 
• Wavelet decomposition

• Trigger generation based on 
threshold (tunable). WDF 
signal-to-noise ratio:

• Window 0.25 s, overlap 0.0625 s
Iess, Cuoco, Morawski, Powell (preprint 2020)

GPS TIMES OF 
TRIGGERS

WDF efficiency vs. injection SNR

(Donoho, Johnstone 1994) 

7/13
Alberto Iess courtesy

Wavelet Detection Filter (WDF) as event trigger generator



• Train, Validation, Test sets: 60%, 10%, 30%
• 3 or 4 Convolutional layers
• Activation function f: ReLU
• Adam optimizer, learning rate α = 0.001, decay rate of 

0.066667 
• Early stopping
• Batch Size: 64 or 128
• Loss function: Categorical-cross entropy

Dataset: chunks of 3 hr data 
with 1000 injections/h

GPU: Tesla k40

8/13
Alberto Iess courtesy

Neural Network architecture



1D CNN 2D CNN

ET

VO3

• Train on all CCSNe 
waveforms and glitches.

• Test on all.

TRAINED 
CNN MODEL

Test 
samples

SIGNAL GLITCH

• Training time: ~ 30 min

Iess, Cuoco, Morawski, Powell (preprint 2020)

10/13
Alberto Iess courtesy

Binary Classification



ET, MERGED 1D & 2D CNN

• Train on all  (4 CCSNe 
waveform models + glitches).

• Test on all.

TRAINED 
CNN MODEL

Test 
samples

he3.5 Sine 
gauss.

s18 s11 s13 s25 Scatt. 
light

COMPLEX 
TASK

LONGER TRAINING (> 1 
hr)

12/13
Alberto Iess courtesy

MultiLabel classification
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REAL NOISE FROM O2 SCIENCE RUN

• 44 segments (4096s per segment) from O2 
science run.

• Added m39, y20, s18np models (Powell, 
Mueller 2020).

• Fixed distance of 1 kpc. 
• Added LSTM Networks, suited for timeseries 

data.
• Added Three ITF classification.

• Powell s18np: differs from s18 since simulation does 
not include perturbations from the convective 
oxygen shell. As a result, this model develops strong 
SASI after collapse.
 

• Powell y20: non-rotating, 20 solar mass Wolf-Rayet 
star with solar metallicity.

• Powell m39: rapidly rotating Wolf-Rayet star with an 
initial helium star mass of 39 solar masses

s18np

y20

m39

Powell and  Müller (2020)

Alberto Iess courtesy
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REAL NOISE FROM O2 SCIENCE RUN

• Noise PSD is non stationary.
• Multiple Glitch Families.
• SNR distribution is affected by ITF antenna pattern.
• Dataset: ~15000 samples.
• Imbalanced Dataset due to different model amplitudes.

CCSN Classification on Simulated and Real O2 Data with CNNs and LSTMs
A. Iess, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, accepted for A&A 
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LONG SHORT TERM MEMORY (LSTM) NETWORK

Prediction

• Keeps track of dependencies in time-series.
• Avoids the Vanishing Gradient problem.

Pros

Cons

• Many parameters to train, long training times.
• Hyperparameter tuning can be challenging.

A. Iess, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, 2022
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MULTILABEL CLASSIFICATION ON REAL O2 NOISE (SINGLE ITF, LIGO H1, DIFFERENT 
MODELS)

• Bi-LSTM, 2 recurrent layers
• ~10 ms/sample 
• Best weights over 100 epochs

• 1D-CNN, 4 convolutional layers
• ~2 ms/sample 
• Best weights over 20 epochs

• 2D-CNN, 4 convolutional layers
• ~3 ms/sample 
• Best weights over 20 epochs

A. Iess, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, 2022



• Dataset breakdown:
675 noise, 329 s18p, 491 s18np, 115 he3.5, 
1940 m39, 1139 y20, 76 s13, 1557 s25.

• Input to NNs have additional dimension (ITF) 

L
1

H
1

V
1

A. Iess, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav,  accepted in A&A
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Analysis on 3 detectors and merged models on O2 data



Anomaly Detection in 
Gravitational Waves data 

using Convolutional 
AutoEncoders for CBC signals

Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, 
https://doi.org/10.1088/2632-2153/abf3d0
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https://doi.org/10.1088/2632-2153/abf3d0


Example for detection/classification for CBC signals

Create a deep learning pipeline allowing detection of anomalies 
defined in terms of transient signals: gravitational waves as well as 
glitches.

Additionally: Consider reconstruction of the signal for the found 
anomalies.

Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, https://iopscience.iop.org/article/10.1088/2632-2153/abf3d0
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Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, https://iopscience.iop.org/article/10.1088/2632-2153/abf3d0
Filip Morawski courtesy

Auto-Encoder workflow



Pipeline concept

Model 
input

Model 
prediction

43
Filip Morawski courtesy



O2 data - MSE Distributions
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Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, 
https://iopscience.iop.org/article/10.1088/2632-2153/abf3d0

GW150914



GW170806
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Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, 
https://iopscience.iop.org/article/10.1088/2632-2153/abf3d0
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Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, 
https://iopscience.iop.org/article/10.1088/2632-2153/abf3d0

 GW170814



Data generation

CNN-1D CNN-2D LSTM

Results

Data processing

Whitening

Create training 
sets and scale 
the data

Deep Learning pipelines

Andrei Utina, Filip Morawski, Alberto Iess, 
Francesco Marangio, Tania Regimbau, Elena 

Cuoco, Giuseppe Fiameni

Deep learning searches 
for gravitational waves 
stochastic backgrounds



❖ MDC package was used to generate 
time-series data of detector noise and BBH 
coalescences.

❖ Data was simulated for Handford O3 
sensitivity and ET-D design sensitivity starting 
at 30 Hz.

❖ A full duration of a simulated dataset was 
2048 seconds, sampled at 4096 Hz.

❖ The time interval between successive events 
defined three datasets:

➢ BBH10s for a Poisson parameter of 0.1
➢ BBH4s for a Poisson parameter of 0.25
➢ BBH1s for a Poisson parameter of 1

49

Recovered signals from a Welch method are shown 
by the blue and black curves above. For reference, 
ET-D design sensitivity is shown by the orange curve 
and the H1 O3 measured strain on Sep 05 2019 at 
36.6 W input power and 2 dB of squeezing.

Andrei Utina, Filip Morawski, Alberto Iess, Francesco Marangio, Tania Regimbau, Elena 
Cuoco, Giuseppe Fiameni

Andrei Utina courtesy

Data generation



❖ After processing, the library of feature and 
label vectors were created.

❖ The duration of each data instance was set to 2 
seconds. For performance reasons, in the case 
of the LSTM algorithm, the length was set to 1 
second.

❖ The 2-D space of the spectrogram 
representation gives the input for the CNN2D 
algorithm:

➢ Top left shows a high SNR chirp signal for ET.

➢ Top right shows a similar signal but for LIGO.

❖ The 1-D time-series representation is the input 
for the CNN1D algorithm and the LSTM 
algorithm.

50Andrei Utina courtesy



❖ We chose Convolutional Neural Networks (CNN) and 
Long-Short-Term Memory Networks (LSTM) as the test 
deep learning algorithms.

❖ The full sets were split into 70% training set, 10% 
validation set and 20% test set. 

❖ The performance of the algorithms strongly relies on 
the tuning of the hyperparameters:

➢ We hypertuned over a multi-dimensional parameter space 
including the number and type of perceptron layers, the 
filter numbers and sizes, the learning rate and the 
optimizers.

➢ The tuning was performed using Hyperband, a random 
search algorithm that assigns resources adaptively.

➢ The hypertuning was performed on the whitened 4s and 
10s datasets.

❖ All the computations were performed on the 
Marconi100 HPC cluster of CINECA. 51

Deep Learning setup
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CNN1D

CNN2D

(130, 40)

Conv layer

MaxPool layer

(250,16)

(3)

(310, 32)

(130, 8)

(2)

(100, 32)

(100, 32)

(3)

(310, 48)

(190, 16)

(3)

(130, 32)

(130, 32)

(2)

Time-series Input

Spectrogram Input

(40, (4*4))

(2,2)

(0.5)

(40, (3*3))

(2,2)

(40, (2*2))

(2)

(200)

(1)

Output

Output

Output example: The 
confusion matrix from 
the classification

Flatten layer

Dense layer

P
re

di
ct

ed
 V

al
ue

s

Real Values

Spatial Dropout

Andrei Utina courtesy

CNN architectures
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Input 
layer

Two bidirectional LSTM 
layers with dimensions 
64 and 32

Input time-series

4 FC layers

First layer 
connection

Second layer 
connection

Output, similar 
performance metric 
as in the CNN 
architectures

Softmax activation

(1024)

(256)

(64)

(32)

0

1

.

.

Andrei Utina courtesy

LSTM architecture



❖ We look at the percentages of the true rates for each Poisson intensity parameter. i.e the correct 
predictions given either noise or signal plus noise inputs.

❖ The H1 O3 detections are either 100% for noise (LSTM) or 50%-50% (not convergent) for both 
noise and signal with noise.

❖ With increasing the Poisson intensity parameter, the detection accuracy increases significantly 
for both noise and signal.

❖ All three algorithms showed similar results for the 1s dataset.

❖ The detection efficiencies of the CNNs were similar: 67%+ for 10s, 75%+ for the 4s and 95%+ for 
the 1s datasets.
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CNN1D ResultsCNN2D ResultsLSTM Results

Andrei Utina courtesy

Results
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Review paper: Enhancing gravitational-wave science with machine learning  Elena Cuoco et al 
2021 Mach. Learn.: Sci. Technol. 2 011002

Glitches 
classification

GW signal 
detection

Parameter 
estimation

Sky 
localization

Easy access 
information Data quality Waveform 

modelling …

Machine learning applications in LVK: a long list



Thank you


