Artificial Intelligence for Gravitational Wave Data Analysis

Applications of AI to gravitational wave science March 18, 2022 Université de Genève

Elena Cuoco, EGO & SNS

EOSC Future

GW astrophysical sources

Short long

Coalescing Binary Systems CBC

Black hole – black hole
 Neutron star – neutron star
 BH-NS
 Analytical waveform

Continuous Sources Spinning neutron stars monotone waveform

Transient'Burst'Sources core collapse supernovae cosmic strings unmodeled waveform

Cosmic GW Background residue of the Big Bang, stochastic, incoherent background

Do we know their Waveforms?

Known 🗆 unknown form

GW detector data

• **Time series sequences**... noisy time series with low amplitude GW signal buried in

- pyCBC (Usman et al, 2015)
- MBTA (Adams et al. 2015)
- gstlal-SVD (Cannon et al. 2012)

Matched-filter

CBC search

How we detect transient signals: modeled search

- Strategy: look for excess power in single detector or coherent/coincident in network data
- Example cWB (https://gwburst.gitlab.io/)
 - Time-domain data preprocessed
 - Wavelet decompositon
 - Event reconstruction

Burst search

How we detect transient signals: un-modeled search

Coherent WaveBurst was used in the first direct detection of gravitational waves (GW150914) by LIGO and is used in the ongoing analyses on LIGO and Virgo data.

Time-Frequency maps of GW150914: Livingston data (left), Hanford data (right) First screenshot of GW150914 event

Phys. Rev. D 93, 042004 (2016) Class.Quant.Grav.25:114029,2008

Why AI for Gravitational Wave data?

- A lot of noise and few GW signals
- Low SNR signals
- Many transient noise disturbances
- Not stationary/non linear noise
- Many monitoring auxiliary channels
- Computational and timing efficiency

Non linear, not stationary noise

Spectrogram of V1:spectro_LSC_DARM_300_100_0_0 : start=1189644747.000000 (Sun Sep 17 00:52:09 2017 UTC)

Spectrogram of V1:spectro Hrec hoft 20000Hz 300 100 0 0 : start=1210701379.000000 (Fri May 18 17:56:01 2018 UTC)

Glitches

https://www.zooniverse.org/projects/zooniverse/gravity-spy

Gravity Spy, Zevin et al (2017)

How machine learning can help

Data conditioning

·Identify Non linear noise coupling

•Use Deep Learning to remove noise

•Extract useful features to clean data

Signal Detection/Classification/PE •A lot of fake signals due to noise •Fast alert system •Manage parameter estimation (See following talks)

How to deal with data?

- Input: Time series
- Pre-processing analysis
- Change of domain space: Time-Frequency projections
- Different Machine Learning models

Preprocessing-Whitening

On-line power spectra identification and whitening for the noise in interferometric gravitational wave detectors DOI 10.1088/0264-9381/18/9/309 Classical and Quantum Gravity

Are we able to clean data from glitch?

Ligo Livingston

GW 170817

Normalized amplitude

Abbott et al. (2017)

-10

Time series or Images?

Machine learning workflow

Machine learning models. Which one ??

Some examples from my group, but many more in LVK callaboration...

AI GW application

Noise Transient signal classification

GW signal classification (CBC or CCSN)

Stochastic background detection

Transient Noise classification and Images as input data

Why Image-based classification

Simulated and real data

Glitch & Citizen science: GravitySpy

www.gravityspy.org

Citizen scientists contribute to classify glitches

More details in Zevin+17 <u>10.1088/1361-6382/aa5cea</u>

https://doi.org/10.1016/j.ins.2018.02.068

Elen Cuoco

How we started... Data simulation: signal families + Detector colored Noise

Waveform
Gaussian
Sine-Gaussian
Ring-Down
Chirp-like
Scattered-like
Whistle-like
NOISE (random)

0.10

To show the glitch time-series here we don't show the noise contribution

Razzano M., Cuoco E. CQG-104381.R3

Building the images

Spectrogram for each image

2-seconds time window to highlight fatures in long glitches

Data is whitened

Optional contrast stretch

Simulations now available on FigShare

Razzano, Massimiliano; Cuoco, Elena (2018): Simulated image data for testing machine learning classification of noise transients in gravitational wave detectors (Razzano & Cuoco 2018). figshare. Collection. https://doi.org/10.6084/m9.figshare.c.4254017.v1

(e)

(f)

Deep learning: Convolutional Neural Network

		_				
0	0	0	0	0	0	0
0	60	113	56	139	85	0
0	73	121	54	84	128	0
0	131	99	70	129	127	0
0	80	57	115	69	134	0
0	104	126	123	95	130	0
0	0	0	0	0	0	0

ł	Kerne	I
)	-1	

0

0

-1 5 -1

0 -1 0

114		
		6

2-D CNN

Spectrogram images

Alberto less courtesy

Pipeline structure

Input GW data * Image processing Convolutional (depth=16) Block 1 * Time series whitening Convolutional (depth=32) Image creation from time series (FFT spectrograms) * MaxPooling (2x2) * Image equalization & contrast enhancement Dropout (0.25) Classification Convolutional (depth=64) MaxPooling (2x2) Block A probability for each class, take the max Convolutional (depth=64) Add a NOISE class to crosscheck glitch detection N MaxPooling (2x2) Dropout (0.25) **Network layout** Convolutional (depth=128) Tested various networks, including a 4-block layers ۲ Block MaxPooling (2x2) Run on GPU Nvidia GeForce GTX 780 Convolutional (depth=128) ω MaxPooling (2x2) 2.8k cores, 3 Gb RAM) Dropout (0.25) • Developed in Python + CUDA-optimized libraries • Fully Connected (N=512) Out Block Dropout (0.25)

Fully Connected (N=N_{alase})

M. Razzano courtesy

Classification accuracy

Normalized Confusion Matrix

Razzano M., Cuoco E. CQG-104381.R3

Application Test on Real data: OI run

Glitch name	# in H1	# in L1
Air compressor	55	3
Blip	1495	374
Chirp	34	32
Extremely Loud	266	188
Helix	3	276
Koi fish	580	250
Light Modulation	568	5
Low_frequency_burst	184	473
Low_frequency_lines	82	371
No_Glitch	117	64
None_of_the_above	57	31

Dataset from GravitySpy images

Paired doves	27	-
Power_line	274	179
Repeating blips	249	36
Scattered_light	393	66
Scratchy	95	259
Tomte	70	46
Violin_mode	179	-
Wandering_line	44	-
Whistle	2	303

0.00 $0.00 \ 0.00 \$ 1400ripples 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 air_compressor 0.00 0.00 0.00 extremely_loud 0.00 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 helix koi fish light_modulation $_0.00\ 0.0$ 0.00 0.00 0.00 0.00 0.96 0.03 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 low_frequency_burst repeating_blips 0.00 tomte 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 violin mode 1.00 0.00 wandering line 0.00 0.00 0.00 0.91 .00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 whistle 100000 NO 10801 Contraction of the second

True class

Full CNN stack

Consistent with Zevin+2017

Elena Cuoco

GW Astrophysical signal classification

Compact Binary Coalescences

Credit LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet)

Matched filter modeled searches

Core Collapse Supernovae

This is Cassiopeia A, a core collapse supernova remnant with a neutron star in its center. Located in the Milky Way only some 11,000 light-years away from Earth, it originally exploded about 330 years ago.

NASA/CXC/UNAM/IOFFE/D, PAGE, P. SHTERNIN ET AL

Unmodeled searches

GWs from Core Collapse Supernovae

- Waveform depends on progenitor star
- Different emission mechanisms (Proto-neutron star oscillation, Standing Accretion Shock Instability (SASI),..)
- Largely Stochastic
- Best waveform models from computationally expensive 3D simulations
- Different simulation models
- Rare (~100 yrs in Milky Way)

Need an alternative to matched filter approach

Hydrogen fusi	on	1		
Helium fusio	n, \	A	L'in	22
Carbon fusion	X	V	\sim / \sim	SAL A
Oxygen fusion	Z	16		
Neon fusion	3H	411		
Magnesium		ttll		51
fusion	EX-			15
Silicon fusion	No.			5572
Iron ast	, Ale	Vin-	J.C.S.	STATES -
		and the	Contractory	0

	10	dential explosion meena	115111
GW emission Process	MHD mechanism (rapid rotation)	Neutrino mechanism (slow/no rotation)	Acoustic mechanism (slow/no rotation)
Rotating collapse and Bounce	Strong	None/weak	None/weak
3D rotational instabilities	Strong	None	None
Convection & SASI	None/weak	Weak	Weak
PNS g-modes	None/weak	None/weak	Strong

Core-Collapse Supernovae models

- Andresen sll: Low amplitude, non-exploding, peak emission at lower frequencies
- Radice s13: Non-exploding, lower amplitudes
- Radice s25: Late explosion time, standing accretion shock instability SASI), high peak frequency
- Powell s18: High peak frequency, exploding model
- Powell He3.5: ultra-stripped helium star, high peak frequency, exploding model

less, Cuoco, Morawski, Powell, https://doi.org/10.1088/2632-2153/ab7d31

MDC and CCSN GW simulation

$h(t) = F_+ h_+(t) + F_\times h_\times(t)$

- Distances: VO3 0.01 kpc to 10 kpc ET 0.1 kpc to 1000 kpc
- Random sky localization

 $h_{SG}(t) = h_0 \sin(2\pi f_0(t-t_0)) e^{-\frac{(t-t_0)^2}{2\tau^2}}$

 $h_{SL}(t) = h_0 \sin(\phi_{SL}) e^{-\frac{(t-t_0)^2}{2\tau}}$

Large SNR range

 $\phi_{SL} = 2\pi f_0 (t - t_0) [1 - K(t - t_0)^2]$

BACKGROUND STRAIN : simulated data sampled at 4096 Hz built from VO3 and ET projected sensitivities

SINE GAUSSIAN & SCATTERED LIGHT

GLITCHES

Alberto less courtesy 5/13

Wavelet Detection Filter (WDF) as event trigger generator

WDF (Cuoco et al. 2015)

Neural Network architecture

- Train, Validation, Test sets: 60%, 10%, 30%
- 3 or 4 Convolutional layers
- Activation function f: ReLU
- Adam optimizer, learning rate α = 0.001, decay rate of 0.066667
- Early stopping
- Batch Size: 64 or 128
- Loss function: Categorical-cross entropy

Dataset: chunks of 3 hr data with 1000 injections/h

GPU: Tesla k40

 Train on <u>all</u> CCSNe waveforms and glitches.

• Test on <u>all</u>.

Training time: ~ 30 min

1D CNN.

less, Cuoco, Morawski, Powell (preprint 2020)

Alberto less courtesy 10/13

ET

MultiLabel classification

REAL NOISE FROM O2 SCIENCE RUN

- 44 segments (4096s per segment) from O2 science run.
- Added m39, y20, s18np models (Powell, Mueller 2020).
- Fixed distance of 1 kpc.
- Added LSTM Networks, suited for timeseries data.
- Added Three ITF classification.
- *Powell s18np*: differs from s18 since simulation does not include perturbations from the convective oxygen shell. As a result, this model develops strong SASI after collapse.
- *Powell y20*: non-rotating, 20 solar mass Wolf-Rayet star with solar metallicity.
- *Powell m39*: rapidly rotating Wolf-Rayet star with an initial helium star mass of 39 solar masses

Powell and Müller (2020)

Alberto less courtesy

REAL NOISE FROM O2 SCIENCE RUN

- Noise PSD is non stationary.
- Multiple Glitch Families.
- SNR distribution is affected by ITF antenna pattern.
- Dataset: ~15000 samples.
- Imbalanced Dataset due to different model amplitudes.

	Triggers						
Detector	Signal	Noise	Total				
Virgo V1	9273	47901	57174				
Ligo L1	10480	3810	14290				
Ligo H1	10984	4103	15087				
L1, H1, V1	5647	675	6322				

CCSN Classification on Simulated and Real O2 Data with CNNs and LSTMs *A. less*, *E. Cuoco*, *F. Morawski*, *C. Nicolaou*, *O. Lahav*, accepted for A&A

LONG SHORT TERM MEMORY (LSTM) NETWORK

Pros

- Keeps track of dependencies in time-series.
- Avoids the Vanishing Gradient problem.

Cons

- Many parameters to train, long training times.
- Hyperparameter tuning can be challenging.

Prediction

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$
$$h_t = o_t * \tanh \left(C_t \right)$$

A. less, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, 2022

MULTILABEL CLASSIFICATION ON REAL 02 NOISE (SINGLE ITF, LIGO H1, DIFFERENT **MODELS**)

- **<u>Bi-LSTM</u>**, 2 recurrent layers •
- ~10 ms/sample
- Best weights over 100 epochs •
- 1D-CNN, 4 convolutional layers
- ~2 ms/sample
- Best weights over 20 epochs

- **2D-CNN**, 4 convolutional layers
- ~3 ms/sample
- Best weights over 20 epochs

A. less, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, 2022

s13 s25

Radice Radice

0.0 0.0 0.0 0.0 0.0

Powell m39 Powell_y20

owell_s18np

Powell_he3.

Real label

80

-60

40

20

Analysis on 3 detectors and merged models on O2 data

- Dataset breakdown:
 675 noise, 329 s18p, 491 s18np, 115 he3.5, 1940 m39, 1139 y20, 76 s13, 1557 s25.
- Input to NNs have additional dimension (ITF)

A. less, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, accepted in A&A

Anomaly Detection in Gravitational Waves data using Convolutional AutoEncoders for CBC signals

Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, https://doi.org/10.1088/2632-2153/abf3d0

Example for detection/classification for CBC signal

Create a deep learning pipeline allowing detection of anomalies defined in terms of **transient signals**: gravitational waves as well as glitches.

Additionally: Consider **reconstruction of the signal** for the found anomalies.

Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, https://iopscience.iop.org/article/10.1088/2632-2153/abf3dQ

Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, https://iopscience.iop.org/article/10.1088/2632-2153/abf3d0 Filip Morawski courtesy

02 data - MSE Distributions

GWI50914

Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, https://iopscience.iop.org/article/10.1088/2632-2153/abf3d0

GW170806

Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, https://iopscience.iop.org/article/10.1088/2632-2153/abf3d0

GW170814

Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, https://iopscience.iop.org/article/10.1088/2632-2153/abf3d0

Deep learning searches for gravitational waves stochastic backgrounds

Andrei Utina, Filip Morawski, Alberto Iess, Francesco Marangio, Tania Regimbau, Elena Cuoco, Giuseppe Fiameni

Data generation

- MDC package was used to generate time-series data of detector noise and BBH coalescences.
- Data was simulated for Handford O3 sensitivity and ET-D design sensitivity starting at 30 Hz.
- A full duration of a simulated dataset was 2048 seconds, sampled at 4096 Hz.
- The time interval between successive events defined three datasets:
 - > BBHIOs for a Poisson parameter of 0.1
 - > BBH4s for a Poisson parameter of 0.25
 - > BBHIs for a Poisson parameter of I

Recovered signals from a Welch method are shown by the blue and black curves above. For reference, ET-D design sensitivity is shown by the orange curve and the H1 O3 measured strain on Sep 05 2019 at 36.6 W input power and 2 dB of squeezing.

Andrei Utina courtesy

- After processing, the library of feature and label vectors were created.
- The duration of each data instance was set to 2 seconds. For performance reasons, in the case of the LSTM algorithm, the length was set to 1 second.
- The 2-D space of the spectrogram representation gives the input for the CNN2D algorithm:
 - > Top left shows a high SNR chirp signal for ET.
 - > Top right shows a similar signal but for LIGO.
- The 1-D time-series representation is the input for the CNN1D algorithm and the LSTM algorithm.

Andrei Utina courtesy

Deep Learning setup

- We chose Convolutional Neural Networks (CNN) and Long-Short-Term Memory Networks (LSTM) as the test deep learning algorithms.
- The full sets were split into 70% training set, 10% validation set and 20% test set.
- The performance of the algorithms strongly relies on the tuning of the hyperparameters:
 - We hypertuned over a multi-dimensional parameter space including the number and type of perceptron layers, the filter numbers and sizes, the learning rate and the optimizers.
 - > The tuning was performed using Hyperband, a random search algorithm that assigns resources adaptively.
 - The hypertuning was performed on the whitened 4s and 10s datasets.
- All the computations were performed on the Marconi100 HPC cluster of CINECA.

CNN architectures

Andrei Utina courtesy

LSTM architecture

Andrei Utina courtesy

Results

LSTM Results						CNN2D Res	ults				CNN1D F	Results	
Chosen Whitened Data Results			Whitened Data Results Chosen Whitened Data Results			Chosen	Whitened Data Results		sults				
Detector	Occurrence	Noise	Signal		Detector	Occurrence	Noise	Signal		Detector	Occurrence	Noise	Signal
ET	1s	99.0 %	91.3 %		ET	1s	97.9 %	95.3 %		ET	1s	97.9 %	95.3 %
	4s	94.5 %	62.4 %			4s	89.2 %	79.2 %			4s	87.5 %	75.7 %
	10s	94.5 %	48.7 %			10s	88.3 %	69.2 %	~		10s	90.2 %	67.3 %
LIGO H O3	1s	100 %	0 %	L	IGO H O3	1s	50 %	50 %		LIGO H O3	1s	50 %	50 %
	4s	100 %	0 %			4s	50 %	50 %			4s	50 %	50 %
	10s	100 %	0 %			10s	50 %	50 %			10s	50 %	50 %

 We look at the percentages of the true rates for each Poisson intensity parameter. i.e the correct predictions given either noise or signal plus noise inputs.

The H1 O3 detections are either 100% for noise (LSTM) or 50%-50% (not convergent) for both noise and signal with noise.

- With increasing the Poisson intensity parameter, the detection accuracy increases significantly for both noise and signal.
- All three algorithms showed similar results for the 1s dataset.
- The detection efficiencies of the CNNs were similar: 67%+ for 10s, 75%+ for the 4s and 95%+ for the 1s datasets.

Machine learning applications in LVK: a long list

Review paper: Enhancing gravitational-wave science with machine learning Elena Cuoco et al 2021 Mach. Learn.: Sci. Technol. 2 011002

