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properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.
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Talk outline

❖ Current and future gravitational wave detectors

❖ Gravitational wave parameter estimation

❖ Emulation of gravitational wave models using Gaussian processes (briefly)

❖ Fast and accurate parameter estimation using neural posterior estimation
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Figure 1.1: Gravitational-wave strain noise for current and future detectors (left) and astrophysical reach for
equal-mass, nonspinning binaries distributed isotropically in sky and inclination (right).

1.2 Gravity, Spacetime and Gravitational Waves

The nature of space and time has fascinated the human intellect for millennia. In the 17th century Newton laid
out the first concrete notions in his Principia Mathematica by asserting that space and time are immutable
and not amenable to change due to external influence:

• Absolute, true, and mathematical time, of itself, and from its own nature, flows equally without relation
to anything external.

• Absolute space, in its own nature, without relation to anything external, remains always similar and
immovable.

A corner stone of Newtonian physics is the principle of relativity according to which the laws of physics
are the same for all observers in relative motion. Specifically, spatial separations and time intervals between
physical events are identical for all observers. This meant that the speed of light was different for observers
depending on their relative motion. These notions were the guiding principles of physics for over two
centuries and formed the basis for building the theory of gravitation.

At the beginning of the 20th century Einstein formulated the special theory of relativity in which the
speed of light was the same for all observers as required by the decisive precision experiment of Michelson
and Morley a few years before. The idea of absolute space and time was incompatible with special relativity
in which spatial separations and time intervals depended on an observer’s motion. Furthermore, he soon
realized that matter must alter the geometry of space and the flow of time. This eventually led him to a new
theory of gravity, the general theory of relativity, according to which matter and energy warp spacetime and
accelerated masses can create ripples in that distortion, called gravitational waves, that travel outward from
their sources at the speed of light.

Large amplitude gravitational waves emanate from regions of strong gravity with masses moving at
relativistic speeds, making them ideal for studying dynamical spacetimes. They interact weakly with matter
and are hardly dispersed as they propagate from their sources to Earth; so the waves carry uncorrupted
signature of their sources. A passing gravitational wave causes the rate at which clocks tick and physical
distance between test masses to vary—the basic principle behind gravitational wave detectors. Gravitational
waves were deemed responsible for the measured decrease in the orbital period of a pair of neutron stars
discovered by Hulse and Taylor in 1976. Since 2015, gravitational wave detectors have ushered in a new era
in astronomy.

Current and future detectors
❖ LIGO/Virgo/KAGRA: Ground-based interferometers 

currently operating. 100 (likely) astrophysical sources 
observed to date, over three observing runs.

❖ LISA: space-based interferometer to launch in ~2035, 
operating in mHz band. ESA-led; NASA contributions,

❖ 3G: next generation ground-based detector concepts 
under development. Einstein Telescope (Europe) and 
Cosmic Explorer (US). To start operation in ~2030s.



Overview of GW parameter estimation
❖ GW parameter estimation typically uses Bayesian inference, in which we obtain samples 

from the posterior distribution after specifying a prior distribution and the likelihood

❖ Typically we assume the detector output is a linear combination

❖ and that the noise is Gaussian, giving the likelihood

❖ Inference typically uses Markov Chain Monte Carlo or other stochastic sampling methods 
to draw samples from the posterior distribution - needs millions of likelihood 
evaluations, which rely on constructing expensive waveform models.
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Computational cost: GW150914
❖ The analysis of GW150914 used 50 

million CPU hours (20,000 PCs 
running for 100 days). A 
significant fraction of that was PE.

❖ Lag between observation and 
publication of exceptional events 
mostly dominated by PE (re-)runs.

For robustness and validation, we also use other generic
transient search algorithms [41]. A different search [73] and
a parameter estimation follow-up [74] detected GW150914
with consistent significance and signal parameters.

B. Binary coalescence search

This search targets gravitational-wave emission from
binary systems with individual masses from 1 to 99M⊙,
total mass less than 100M⊙, and dimensionless spins up to
0.99 [44]. To model systems with total mass larger than
4M⊙, we use the effective-one-body formalism [75], which
combines results from the post-Newtonian approach
[11,76] with results from black hole perturbation theory
and numerical relativity. The waveform model [77,78]
assumes that the spins of the merging objects are aligned
with the orbital angular momentum, but the resulting
templates can, nonetheless, effectively recover systems
with misaligned spins in the parameter region of
GW150914 [44]. Approximately 250 000 template wave-
forms are used to cover this parameter space.
The search calculates the matched-filter signal-to-noise

ratio ρðtÞ for each template in each detector and identifies
maxima of ρðtÞwith respect to the time of arrival of the signal
[79–81]. For each maximum we calculate a chi-squared
statistic χ2r to test whether the data in several different
frequency bands are consistent with the matching template
[82]. Values of χ2r near unity indicate that the signal is
consistent with a coalescence. If χ2r is greater than unity, ρðtÞ
is reweighted as ρ̂ ¼ ρ=f½1þ ðχ2rÞ3&=2g1=6 [83,84]. The final
step enforces coincidence between detectors by selecting
event pairs that occur within a 15-ms window and come from
the same template. The 15-ms window is determined by the
10-ms intersite propagation time plus 5 ms for uncertainty in
arrival time of weak signals. We rank coincident events based
on the quadrature sum ρ̂c of the ρ̂ from both detectors [45].
To produce background data for this search the SNR

maxima of one detector are time shifted and a new set of
coincident events is computed. Repeating this procedure
∼107 times produces a noise background analysis time
equivalent to 608 000 years.
To account for the search background noise varying across

the target signal space, candidate and background events are
divided into three search classes based on template length.
The right panel of Fig. 4 shows the background for the
search class of GW150914. The GW150914 detection-
statistic value of ρ̂c ¼ 23.6 is larger than any background
event, so only an upper bound can be placed on its false
alarm rate. Across the three search classes this bound is 1 in
203 000 years. This translates to a false alarm probability
< 2 × 10−7, corresponding to 5.1σ.
A second, independent matched-filter analysis that uses a

different method for estimating the significance of its
events [85,86], also detected GW150914 with identical
signal parameters and consistent significance.

When an event is confidently identified as a real
gravitational-wave signal, as for GW150914, the back-
ground used to determine the significance of other events is
reestimated without the contribution of this event. This is
the background distribution shown as a purple line in the
right panel of Fig. 4. Based on this, the second most
significant event has a false alarm rate of 1 per 2.3 years and
corresponding Poissonian false alarm probability of 0.02.
Waveform analysis of this event indicates that if it is
astrophysical in origin it is also a binary black hole
merger [44].

VI. SOURCE DISCUSSION

The matched-filter search is optimized for detecting
signals, but it provides only approximate estimates of
the source parameters. To refine them we use general
relativity-based models [77,78,87,88], some of which
include spin precession, and for each model perform a
coherent Bayesian analysis to derive posterior distributions
of the source parameters [89]. The initial and final masses,
final spin, distance, and redshift of the source are shown in
Table I. The spin of the primary black hole is constrained
to be < 0.7 (90% credible interval) indicating it is not
maximally spinning, while the spin of the secondary is only
weakly constrained. These source parameters are discussed
in detail in [39]. The parameter uncertainties include
statistical errors and systematic errors from averaging the
results of different waveform models.
Using the fits to numerical simulations of binary black

hole mergers in [92,93], we provide estimates of the mass
and spin of the final black hole, the total energy radiated
in gravitational waves, and the peak gravitational-wave
luminosity [39]. The estimated total energy radiated in
gravitational waves is 3.0þ0.5

−0.5M⊙c2. The system reached a
peak gravitational-wave luminosity of 3.6þ0.5

−0.4 × 1056 erg=s,
equivalent to 200þ30

−20M⊙c2=s.
Several analyses have been performed to determine

whether or not GW150914 is consistent with a binary
black hole system in general relativity [94]. A first

TABLE I. Source parameters for GW150914. We report
median values with 90% credible intervals that include statistical
errors, and systematic errors from averaging the results of
different waveform models. Masses are given in the source
frame; to convert to the detector frame multiply by (1þ z)
[90]. The source redshift assumes standard cosmology [91].

Primary black hole mass 36þ5
−4M⊙

Secondary black hole mass 29þ4
−4M⊙

Final black hole mass 62þ4
−4M⊙

Final black hole spin 0.67þ0.05
−0.07

Luminosity distance 410þ160
−180 Mpc

Source redshift z 0.09þ0.03
−0.04
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❖ Faster waveform model evaluation facilitates faster PE with standard methods. 
Compensate for approximations by modelling errors with Gaussian process regression, 
representing the model error             by a Gaussian distribution, trained with simulations

❖ The corresponding marginalised likelihood for the data is
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Emulation of waveform models



❖ GPR is useful for all types of emulation, including population inference. While it 
mitigates some waveform evaluation costs, its primary appeal is that it provides an 
error estimate that can be marginalised over (e.g., Williams et al. 2020).
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FIG. 2. GPR predictions, compared to NR. One hundred draws from the Gaussian process (left panel) for a non-
spinning configuration (~s1 = (0, 0, 0), ~s2 = (0, 0, 0), ~q = 0.625) with a total mass of 60-solar masses, shown as light grey
lines compared to a single analytical approximant model, IMRPhenomPv2 in blue. The mean draw from the Gaussian process
is shown as a grey dashed line, while the associated variance is plotted as a grey-filled region surrounding the mean. In the
right panel the distribution of mismatches between the samples and both phenomenological waveforms are shown, with the
vertical lines representing the mismatch between the GPR and the phenomenological waveform. The di↵erences between the
phenomenological model and the GPR model waveforms are seen to also exist between the phenomenological model waveforms
and the NR-derived waveform, plotted here in pink.

FIG. 3. Non-spinning waveform. One hundred draws from the Gaussian process (left panel) for a non-spinning, equal-mass
configuration (~s1 = (0, 0, 0), ~s2 = (0, 0, 0), ~q = 1.0) with a total mass of 60-solar masses, shown as light grey lines compared
to two analytical approximant models, SEOBNRv4 and IMRPhenomPv2 in red and blue respectively. The mean draw from the
Gaussian process is shown as a grey dashed line, while the associated variance is plotted as a grey-filled region surrounding
the mean. In the right panel the distribution of mismatches between the samples and both phenomenological waveforms are
shown, with the vertical lines representing the mismatch between the GPR and the phenomenological waveform.

able, and in principal can facilitate accurate inference
on detected signals. However, the expense of produc-
ing them limits their coverage of the parameter space;
as a result of this lack of coverage, and the considerable
time requirements to produce new waveforms, any infer-
ence method which relied solely on NR techniques could
not hope to satisfy the requirement to rapidly charac-
terise signals, and would not be practical in a scenario
where multiple events are detected every month. Phe-
nomenological models, which can be evaluated rapidly,
are available, which attempt to interpolate across a large
volume of the parameter space, but the accuracy of the
waveforms which they produce can be di�cult to assess.

Ths leads to the possibility of introducing biases into the
inferred properties of the system which generated the sig-
nal.

In this paper we have laid-out an approach to improv-
ing the accuracy of gravitational wave parameter estima-
tion in the context of limited template availability by im-
plementing a waveform approximant model using GPR,
providing not only a point-estimate of the waveform at
any point in the BBH parameter space, but also a distri-
bution of plausible waveforms, allowing the uncertainty
of the interpolation to be taken into account during the
analysis. In contrast to previous attemptes to produce a
GPR model for GW waveforms, such as [7], our model
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FIG. 4. Anti-aligned spin waveform. One hundred draws from the Gaussian process (left panel) for a non-spinning,
equal-mass configuration (~s1 = (0, 0, 0.6), ~s2 = (0, 0,�0.6), ~q = 1.0) with a total mass of 60-solar masses, shown as light grey
lines compared to two analytical approximant models, SEOBNRv4 and IMRPhenomPv2 in red and blue respectively. The mean
draw from the Gaussian process is shown as a grey dashed line, while the associated variance is plotted as a grey-filled region
surrounding the mean. In the right panel the distribution of mismatches between the samples and both phenomenological
waveforms are shown, with the vertical lines representing the mismatch between the GPR and the phenomenological waveform.

FIG. 5. Precessing waveform. One hundred draws from the Gaussian process (left panel) for a precessing system, with
a mass ratio q = 0.25, and a spin configuration (~s1 = (0.413, 0.093, 0.425), ~s2 = (�0.004, 0.013, 0.6)) with a total mass of
60-solar masses, shown as light grey lines compared to a single analytical approximant model, IMRPhenomPv2 in blue. The mean
draw from the Gaussian process is shown as a grey dashed line, while the associated variance is plotted as a grey-filled region
surrounding the mean. In the right panel the distribution of mismatches between the samples and both phenomenological
waveforms are shown, with the vertical lines representing the mismatch between the GPR and the phenomenological waveform.

is trained on data from the Georgia Tech NR waveform
catalogue, described in section IIIA.

We introduced GPR in section II as a non-parametric
regression method. This property allows the regression
model to be constructed while making minimal assump-
tions about the form of the waveforms, which are en-
coded through the form of the covariance function. We
discuss covariance functions in section IIA, and describe
the choice made for our model in section III B. In order
to reduce the computational burdon of evaluating the
model a hierarchical matrix inversion method was used
(described in [11] and discussed in section III C) in com-
bination with a covariance function with finite support.

We present a number of waveforms which have been
produced by our GPR model in section IV, and make
comparisons between its output and two phenomenolog-
ical models. These comparisons show a di↵erence be-
tween the behaviour of the two models which is most
pronounced during the inspiral section of the waveform.
This di↵erence also occurs between the phenomenological
model and the waveform produced from NR. A number
of phenomena are likely to have contributed to this dis-
crepancy. One such di↵erence in the systematic errors of
the NR simulations used to produce the training data for
the GPR model compared to those used to calibrate the
phenomenological models. Additionally, the relatively

Emulation of waveform models



Neural posterior estimation
❖ Stochastic sampling relies on being able to evaluate the likelihood,           , which is 

done during sampling and requires a new waveform evaluation at each step.

❖ Alternative: simulation based inference. Construct a neural network that generates 
samples from a distribution,           , that approximates the target distribution, in this 
case the parameter posterior distribution,           . Train the neural network by 
minimising the average cross-entropy with the true distribution

❖  Compute loss by simulation

❖ Advantages: likelihood-free, amortised cost of waveform generation, flexible.
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Normalizing flows
❖ A normalising flow maps represents a complex distribution as a mapping of a 

simple one.

q(θ |d)!(0,1) fd

❖ Construct target distribution using

❖ Want mapping to be invertible and have a simple Jacobian determinant. Can 
represent a normalising flow with these properties using a neural network.
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Normalizing flows
❖ Build normalising flow from a sequence 

of coupling transforms

❖ The coupling transforms must be 
differentiable and invertible.

❖ We use spline flows (Durkan et al. 2019), 
based on rational quadratic spline 
interpolation between a set of knots.

❖ A sequence of transforms can represent 
very complicated functions.

ui

c i

Figure: Durkan et al (2019)
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NPE refinements: embedding network
❖ The existence of reduced bases shows that waveform bases can be compressed. Could 

impose this by hand, but more robust to learn this using an embedding network. 

Nin = ndet x 24099

Linear projection

Seed with principal components
of noise-free waveforms

ndet x 400

Fully connected residual network

48 hidden layers

Nout = 128 to flow

non-linear compression

inductive bias to recognise waveforms

(8033 frequency bins) x (Re + Im + PSD)
8s segment, sampled at 1024Hz, 

flow = 20Hz



NPE refinements: group equivariant NPE
❖ Representing the time of coalescence, tI, requires many reduced basis elements. Uses 

up a lot of training resources and freedom within the network.

❖ A change in time of coalescence in a single detector corresponds to a (trivial) 
transformation of the data and template. If the time shift is known, the waveform 
can be aligned and the learning process significantly simplified.

❖ Don’t know this a priori and not an exact symmetry for a detector network.



NPE refinements: group equivariant NPE
❖ Introduce a blurred estimate of    ,    , into 

the parameter space.

❖ In training and inference, follow a Gibbs 
sampling procedure

1. Align data based on  

2. Sample      from a fixed kernel

❖ Converges in O(10) iterations.

❖ GNPE exploits (near-) symmetries to 
simplify the learning task.
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NPE network

fd,Sn
(u)

d

θ ∼ q(θ |d, Sn)

flow

Embedding network
Compress data

PSD Sn

Full amortization

Account for PSD 
nonstationarity

Big neural networks:  layers and 150 million parameters ≈ 350

u ∼ !(0,1)D



NPE validation

❖ Check internal or within-
distribution consistency of 
network by generating a p-p plot.

❖ Check external or out-of-
distribution consistency by 
comparing to posterior 
distributions computed for real 
observations using standard 
stochastic samplers.
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NPE validation: GWTC-1 BBHs
• Used  waveforms for training

• IMRPhenomPv2
• ,  ,   
• 15D parameter space
•

• + stationary Gaussian noise realisations consistent with given PSD

• Train several neural networks based on different noise level / number of detectors/ 
distance range:

5 × 106

T = 8 s fmin = 20 Hz fmax = 1024 Hz

m1, m2 ∈ [10,80] M⊙
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NPE validation: GWTC-1 BBHs
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NPE validation: GWTC-1 BBHs
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• Compare NPE posteriors to “standard” posteriors generated by LALInference 
and Bilby. Use JS divergence as a metric for comparison.

• JS divergence less than 2 nats considered indistinguishable.



Summary
❖ Gravitational wave science relies on obtaining parameter posterior distributions for 

all observed sources. Multi-messenger applications require rapid estimation of sky 
position, and perhaps other parameters.

❖ Current PE codes are computationally intensive—need new methods that are fast, 
robust and accurate.

❖ Neural posterior estimation is a new, machine learning approach that now has 
comparable performance to standard methods in a fraction of the time. Training cost 
is amortised, allowing near real-time analysis of new observations.

❖ Group equivariant NPE can be used to simplify training of a neural network by 
exploiting near symmetries.

❖ Future detectors pose many developmental challenges: long waveforms, non-
stationary noise, new sources, overlapping sources, population inference…. NPE 
could provide a viable route to solving (some of) these problems, but further 
developments are required.


