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Talk outline

Current and future gravitational wave detectors
Gravitational wave parameter estimation
Emulation of gravitational wave models using Gaussian processes (briefly)

Fast and accurate parameter estimation using neural posterior estimation



Current and future detectors

102\ —

LIGO/Virgo/KAGRA: Ground-based interferometers
currently operating. 100 (likely) astrophysical sources
observed to date, over three observing runs.

LISA: space-based interferometer to launch in ~2035,
operating in mHz band. ESA-led; NASA contributions,

3G: next generation ground-based detector concepts
under development. Einstein Telescope (Europe) and
Cosmic Explorer (US). To start operation in ~2030s.
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Overview of GW parameter estimation

GW parameter estimation typically uses Bayesian inference, in which we obtain samples
from the posterior distribution after specifying a prior distribution and the likelihood
p(d|0)p(0)

p(6d) = o(d)

Typically we assume the detector output is a linear combination

— —

s(t) = n(t) + h(t; 0)
and that the noise is Gaussian, giving the likelihood

Waveform models are expensive to compute accurately!

— 4/_, 0O & 7 5 7 %
R {_%(d_d_h(g))} (alb) = /_ <f>b<fs>h+(f)<f>b (D gy

Inference typically uses Markov Chain Monte Carlo or other stochastic sampling methods
to draw samples from the posterior distribution - needs millions of likelihood
evaluations, which rely on constructing expensive waveform models.



Computational cost: GW 150914

# The analysis of GW150914 used 50
million CPU hours (20,000 PCs
running for 100 days). A
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significant fraction of that was PE.

* Lag between observation and
publication of exceptional events
mostly dominated by PE (re-)runs.

Primary black hole mass 365 M

Secondary black hole mass DO j M : :

Final black hole mass 62 M '

Final black hole spin OG> | ' | — : |
Luminosity distance 410180 Mpc 5 30 35 40 45 50

Source redshift z 0.0915:93 mioe /M 4




Emulaton of waveform models

Faster waveform model evaluation facilitates faster PE with standard methods.
Compensate for approximations by modelling errors with Gaussian process regression,
representing the model error §h () by a Gaussian distribution, trained with simulations

— — —

p(8h(8)) o exp _(5h(t; = u(t;ti)Z\?g)(t; 0) — u(t;0))
u(0) = [K.], (K], 0h(6;)  o*(0) = K.. — [K.); K], [K.]
K],; = k(6:,6;) K.], = k(0,0;) K..=k(f,0)
The corresponding marginalised likelihood for the data is
- 1 ey (d — hap(t;0) — pu(t; 0)|d — hap(t; 0) — p(t: H)) :

P Ree — exp | ——= —
ap(0) 1+ 02(f) p 9 1+ 02(6)




Strain

Emulaton of waveform models

GPR is useful for all types of emulation, including population inference. While it

mitigates some waveform evaluation costs, its primary appeal is that it provides an
error estimate that can be marginalised over (e.g., Williams et al. 2020).
GPR Draws
9757w = GPR Mean
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Neural posterior estimation

Stochastic sampling relies on being able to evaluate the likelihood, p(d|6), which is
done during sampling and requires a new waveform evaluation at each step.

Alternative: simulation based inference. Construct a neural network that generates
samples from a distribution, q(0|d), that approximates the target distribution, in this
case the parameter posterior distribution, p(0|d). Train the neural network by
minimising the average cross-entropy with the true distribution

L =E,q)Ep@a) [—logq(0|d)] = Ey0)Epqjey |— log q(8]d)]

Compute loss by simulation

Sample 69 ~ p@), i=1,...,N

Simulate d\9 ~ p(d|0?); d® = r(0D) +n with nY ~ pg (n)
i £ A
Compute L ~ N ; [_ log q(g(z)‘d(z))}

Advantages: likelihood-free, amortised cost of wavetorm generation, flexible.



Normalizing flows

A normalising flow maps represents a complex distribution as a mapping of a
simple one.

N (O,1) fa |} 2@1d)

Construct target distribution using
q(0]d) = N(0,1)7 (f;(0)) |det.] "

Want mapping to be invertible and have a simple Jacobian determinant. Can

represent a normalising flow with these properties using a neural network.



Normalizing flows

Build normalising flow from a sequence —— RQ Spline
of coupling transforms B-
— |nverse
o u if i < D/2 Anots
“@il") =\ c(uiuyp,d) ifi> Df2

The coupling transforms must be
differentiable and invertible.

We use spline flows (Durkan et al. 2019),

. : . — 131
based on rational quadratic spline
interpolation between a set of knots. | . '
B 0 B
A sequence of transforms can represent U.

very complicated functions.
Figure: Durkan et al (2019)



NPE refinements: embedding network

The existence of reduced bases shows that waveform bases can be compressed. Could
impose this by hand, but more robust to learn this using an embedding network.

Neri= #aee X 24099 - (8033 frequency bins) x (Re + Im + PSD)
8s segment, sampled at 1024Hz,
of noise-free waveforms . inductive bias to recognise waveforms
NMdet X 400
— £ non-linear compression
48 hidden layers

Nout = 128 W



NPE refinements: group equivariant NPE

7
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Representing the time of coalescence, t;, requires many reduced basis elements. Uses

up a lot of training resources and freedom within the network.
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transformation of the data and template. If the time shift is known, the waveform

can be aligned and the learning process significantly simplified.

Don’t know this a priori and not an exact symmetry for a detector network.




NPE refinements: group equivariant NPE

Introduce a blurred estimate of t;, ¢; into
the parameter space.

In training and inference, follow a Gibbs
sampling procedure

1. Align data based on #; > e \'
A / I
0~ q(0IT s, (d), ir) TR
/
£ / I
A : 1 / /
2. Sample ¢; from a fixed kernel | /
\ Pl
tr ~ p(trltr) ==
e
Converges in O(10) iterations. \.7

GNPE exploits (near-) symmetries to t;
simplify the learning task.



NPE network

PSD S.

Full amortization
Account for PSD
Compress data

— @mbedding networ@

nonstationarity

|

é N
u~ N0,1P « > fd,Sn(u)
§ J

flow

Big neural networks: =~ 350 layers

5 > 0~q(0|d,S,)

and 150 million parameters
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NPE validation

1.0

—— m1 (0.044)
. . . —— myg (0.43)
Check internal or within- 4o (0l7e)
—— t. (0.31)
—— dy, (0.77)
network by generating a p-p plot. — a1 (0.39)
as (0.38)
— 671 (0.82)
0.6 - 65 (0.68)
— ¢12 (0.43)

T ¢JL (0'58)
~-—- 0 N (0.68)

———— 4 (0.015)
o (0.44)

distribution consistency of 0.8 -

Check external or out-of-
distribution consistency by 0.4 -
comparing to posterior

CDF(p)

distributions computed for real o

observations using standard
stochastic samplers.

0.0 0.2 0.4 0.6 0.8 1.0



NPE validation: GWTC-1 BBHs

« Used 5 x 10° waveforms for training s |  Train loss
CLP ' Validation loss
e IMRPhenomPv2 A
e T=8S, f,., =20 Hz, f .. = 1024 Hz 4.4 -

* 15D parameter space
« my,m, € [10,80] Mg

3.8 T T i T T
0 100 200 300 400 500 600

epoch

e + stationary Gaussian noise realisations consistent with given PSD

e Train several neural networks based on different noise level / number of detectors/
distance range:

Observing run  Detectors Distance range [Mpc]

O1 AL 100, 2000]
100, 2000]

02 o 100, 6000]
ALV 100, 1000




1 BBHs

NPE validation: GW'TC

LI MCMC
DINGO

_' 50,000 samples in ~ 20 s '

GW150914




NPE validation: GWTC-1 BBHs

* Compare NPE posteriors to “standard” posteriors generated by LALInference

and Bilby. Use ]S divergence as a metric for comparison.

* ]S divergence less than 2 nats considered indistinguishable.
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Summary

Gravitational wave science relies on obtaining parameter posterior distributions for
all observed sources. Multi-messenger applications require rapid estimation of sky
position, and perhaps other parameters.

Current PE codes are computationally intensive—need new methods that are fast,
robust and accurate.

Neural posterior estimation is a new, machine learning approach that now has
comparable performance to standard methods in a fraction of the time. Training cost
is amortised, allowing near real-time analysis of new observations.

Group equivariant NPE can be used to simplify training of a neural network by
exploiting near symmetries.

Future detectors pose many developmental challenges: long waveforms, non-
stationary noise, new sources, overlapping sources, population inference.... NPE
could provide a viable route to solving (some of) these problems, but further
developments are required.



