ATLAS TDAQ system: How to pick potentially interesting events out of $4\cdot 10^7$ proton-proton collisions per second?

Ondřej Theiner (DPNC)

&

DPNC ATLAS trigger group: Claire Antel, Kostas Axiotis, Stefano Franchellucci, Pantelis Kontaxakis, Carlos Moreno, Steven Schramm, Anna Sfyrla

Université de Genève

Young researchers' day, 16 September 2022

Ĺ

LHC in numbers

- $27~\mathrm{km}$ long circular accelerator at CERN
- Accelerates protons to 99.9999991% of speed of light and collides them after
- Protons travel in bunches containing $\mathcal{O}\left(10^{11}\right)$ protons on average
- Bunches are crossing each other $4\cdot 10^7$ times per second
- 60-70 collisions per bunch crossing on average
- Protons collide in dedicated points where large experiments (detectors) are located

Figure: Location of LHC. Illustration taken from [1].

Experiment ATLAS

- A huge particle detector
 - one of the two largest experiments at the LHC
 - weights as much as the Eiffel tower
 - designed to cover the widest possible range of physics at the LHC
 - Higgs boson was discovered here

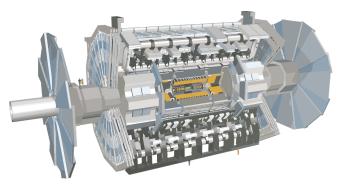


Figure: Model of the ATLAS experiment. Illustration taken from [2].

Experiment ATLAS

- A huge particle detector
 - one of the two largest experiments at the LHC
 - weights as much as the Eiffel tower
 - designed to cover the widest possible range of physics at the LHC
 - Higgs boson was discovered here

Figure: Photo of a part of ATLAS detector. Photo taken from [3].

 $1 \, \mathrm{event} \sim 2 \, \mathrm{MB}$

$$4 \cdot 10^7 \frac{\text{events}}{\text{s}} \times 2 \frac{\text{MB}}{\text{event}} \sim 80 \frac{\text{TB}}{\text{s}}$$

$$4 \cdot 10^7 \frac{\text{events}}{\text{s}} \times 2 \frac{\text{MB}}{\text{event}} \times 86400 \frac{\text{s}}{\text{day}} \sim 6.9 \frac{\text{EB}}{\text{day}}$$

$$4 \cdot 10^7 \frac{\text{events}}{\text{s}} \times 2 \frac{\text{MB}}{\text{event}} \times 86400 \frac{\text{s}}{\text{day}} \sim 6.9 \frac{\text{EB}}{\text{day}}$$

Impossible to store and process \Longrightarrow trigger system

What is TDAQ and why we need it?

- TDAQ = Trigger and Data
 AcQuisition System
- ATLAS has two levels of trigger
- Level 1 trigger
 - hardware level
 - information from the Calorimeter and Muon Trigger System
 - the fastest decisions are made within 2.5 μ s (by 2030: 10 μ s)
- High Level Trigger
 - CPU farm (possibly accelerated by FPGAs by 2030)
 - trigger decision made within $0.5\,\mathrm{s}$ on average (by 2030: $0.5-1\,\mathrm{s}$)

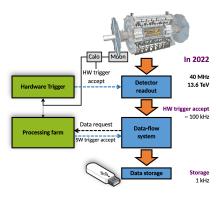


Figure: Schema of ATLAS TDAQ system. Illustration adapted from lectures [4].

ATLAS jet trigger

- One of trigger subsystems
- Selects events containing high transverse momentum hadronic jets
- Requires optimal jet energy resolution to reject overwhelming background while retaining good efficiency for interesting jets

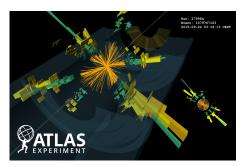


Figure: Jets inside ATLAS detector. Illustration taken from [5].

What is a jet?

 Narrow cone of particles produced in interaction of quarks and gluons during proton-proton collisions

Figure: Diagram depicting concept of jet. Illustration adapted from lectures [4].

Outlook

What is all this useful for?

- Understanding the basic building blocks of the Universe
- We want to study events which are often very rare \Longrightarrow we need good statistics

Message to take away

- Experiments at the LHC can produce huge amount of data
- TDAQ system filters the data in real time and reads them out
- Jet trigger selects potentially interesting events with jets
 - events with jets are extremely interesting both for understanding the standard model of particle physics and for our searches for new physics

Thank you for your attention.